好文档 - 专业文书写作范文服务资料分享网站

2024人教版数学七年级上册教案【优秀8篇】

分享 时间: 加入收藏 我要投稿 点赞

教师能较好的掌握这一基本结构,即能使教师的教学设计方案更加规范,又有利于增进课程实施的科学性。下面是小编辛苦为大家带来的2024人教版数学七年级上册教案【优秀8篇】,您的肯定与分享是对小编最大的鼓励。

篇一:数学七年级上册教学设计 篇一

教学目标

1 知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2 过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3 情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点

1 教学重点:

掌握用整十数除的口算方法。

2 教学难点:

理解用整十数除的口算算理。

教学工具

多媒体设备

教学过程

1 复习引入

口算。

20×3= 7×50= 6×3=

20×5= 4×9= 8×60=

24÷6= 8÷2= 12÷3=

42÷6= 90÷3= 3000÷5=

2 新知探究

1、教学例1

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?

师:怎样解决这个问题?

(2)列式 80÷20

(3)学生独立探索口算的方法

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

A.因为20×4=80,所以80÷20=4 这是想乘算除

B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

把你喜欢的方法说给同桌听。

(5)检查正误

师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

(6)用刚学会的方法再次口算,并与同桌交流你的想法

40÷20 20÷10 60÷30 90÷30

(7)探究估算的方法

出示:83÷20≈ 80÷19≈

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

师:谁想把你的方法跟大家说一说。

预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

19接近于20,80除以20等于 4,所以80除以19约等于4。

2、教学例2

(1)创设情境引出问题

师:谁会解决这个问题?

150÷50

(2)小组讨论口算方法

(3)你是怎么这样快就算出的呢?

A.因为15÷5=3,所以150÷50=3。

B.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30 240÷80 300÷50 540÷90

3、估算

(1)探计估算的方法

师:你能知道题目要求我们做什么吗?

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

3 巩固提升

1、独立口算

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2、算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

3、解决问题

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

240÷40 = 6(包)

答:要捆6包。

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

出示条件:一共有120个小故事,每天看1个故事。

问题:看完这本书大约需要几个月?

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

120÷30 = 4(个)

答:看完这本书大约需要4个月。

课后小结

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

板书

口算除法

有80面彩旗,每班分20面,可以分给几个班?

80÷20

篇二:2024最新人教版数学七年级上册教案 篇二

一、教材分析

1、教材的地位和作用

课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

2、教学目标

根据学生的学习内容、新课程理念和认知水平,特制定如下目标:

(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

3、重点和难点

(1)重点:培养学生的数感和统计观念。

(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

二、学情分析

我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

三、教法和学法分析

枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。

四、教学形式和课前准备

本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。

五、教学过程分析

教学过程 设计意图说明

新课引入

资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?

(2)你了解世界及我国有关水资源的现状吗? 借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!

探究新知活动一:

阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

(1) 地球上的水资源和淡水资源分布情况怎么样?

(2) 我国农业和工业耗水量情况怎么样?

(3) 我国不同年份城市生活用水的变化趋势怎么样?

(4) 根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?

学生阅读资料,通过小组合作、讨论的形式完成活动一。

活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

(1) 家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?

(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?

(5)你还可以得到哪些信息?

(教师巡视,指导各小组开展调查实验活动)

活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。

课堂小结:

1、当前水资源状况,

2、节约水资源带来的价值,

3、节约水资源的办法

布置作业

整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。

通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!

篇三:七年级数学上册教案 篇三

一、教学目标:

(一)教学知识点

1、与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据。

2 。近似数和有效数字 并按要求取近似数。

3、从统计图中获取信息 并用统计图形象地表示数据。

(二)能力训练要求

1、体会描述较小 数据的方法 进一步发展数感。

2、了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用。

3、能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念。

(三)情感与价值观要求:

1、培养学生用数学的意识和信心 体会数学的应用价值。

2、发展学生的创新能力和克服困难的勇气。

二、教学重点:

1、感受较小的数据。

2、用科学记数法表示较小的数。

3、近似数和有效数字 并能按要求取近似数。

4、读懂统计图 并能形象、有效地用统计图描述数据。

教学难点:形象、有效地用统计图描述数据。

教学过程:。创设情景 引入新

三。讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。

1、哪些数据用科学记数法表示比较方便?举例说明。

2、用科学记数法表示下列各数:

(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米。

(2)生物学家发现一种病毒的长度约为0.000043毫米;

(3)某种鲸的体重可达136 000 000千克;

(4)2003年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚。

四。小结:我们这节回顾了以下知识:

1、又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据。

2、在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字。

3、又一次欣赏了形象的统计图 并从中获取有用的信息。

(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象。

(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?

(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?

制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可。

(1)形象统计图(略)只要合理即可。

(2)从表中的数据看出 河流越长 其流域面积越大。

(3)河流的年径流量与河流所处的位置有关系。

五。课后作业:

篇四:数学七年级上册教学设计 篇四

教学目标

1 知识与技能:

认识平行四边形和梯形,掌握特征,理解四边形间的关系。

2 过程与方法:

经历把四边形分类,抽象概括特征的过程,动手操作,合作交流,探讨平行四边形和长方形、正方形之间的关系,发展学生的空间观念和空间思维能力,培养创新意识。

3 情感态度与价值观:

培养学生学以致用的习惯,体会数学的应用于没敢,激发学生学习数学的兴趣、增强自信心。

教学重难点

1 教学重点:

掌握平行四边形和梯形的特征。

2 教学难点:

探讨平行四边形和长方形、正方形的关系。

教学工具

多媒体设备

教学过程

1 谈话引入

一、 复习旧知,导入新课

1、复习旧知

师:同学们,你们认识平行线吗?请看屏幕,这里面哪一组是平行线?

课件出示:

(1)提问:第②组是平行线吗?第⑤组呢?我们来看这三组平行线,请同学们仔细观察。

课件动态依次演示:

(2)师:认识这个四边形吗?

2、点明课题

师:今天我们就来学习──平行四边形的认识。

(二)自主探究,合作交流

1、平行四边形的意义

(1)提供感性材料

师:生活中你见过平行四边形吗?在哪见过,能给大家说一说吗?

①学生尝试举例。

②教师课件出示生活中与平行四边形有关的实例。

a.引导学生找一找、说一说课件实例中的平行四边形。

b.课件呈现:上面的各图中都有平行四边形。

(2)合作探究平行四边形的特征

①师:我们把刚才找到的平行四边形放在一起来观察一下,结合我们对平行四边形初步的认识,谁能说一说它们有哪些共同的特点?

预设:对边平行、对边相等、对角相等

(4)巩固平行四边形的定义。

师:现在,请同学们闭上眼睛想一想平行四边形什么样?想好了吗?下面三个图形中哪一个是平行四边形?

2、认识平行四边形的底和高

(1)介绍平行四边形的底和高。(可以用学生探究平行四边形边的特点时素材为例)

刚才同学们证明平行四边形对边平行的特点时用到了平行线的性质。这条垂直线段就是平行四边形的高。说一说什么是平行四边形的高?

教师帮助学生梳理语言:从平行四边形一条边上的一点向对边引一条垂线,这点到垂足之间的距离就是平行四边形的的一条高。垂足所在的边就是底。

(2)还以这条边为底,还能再画一条高吗?可以作多少条高?这些高长度相等吗?为什么?

(3)练习:(课件出示)

①这是平行四边形的高吗?为什么?

②从这点怎样作平行四边形的高吗?

4、认识梯形的特征。

(1)感知梯形。

①你在生活中见过梯形吗?让学生先说一说。

②老师也搜集了一些实物图片,找一找哪儿有梯形?

课件出示后随着学生的回答逐步隐去情境图,抽象出梯形几何图形。

(2)探究梯形的特征。

刚才我们在生活中找到了这么多的梯形,梯形有什么共同的特点呢?我们一起来研究这个问题。

教师:你发现梯形有哪些共同的特征?与学生一同归纳并板书。

预设:是四边形,只有一组对边平行。

教师:哪些图形不具备这样的特征?为什么?

预设:第二组中的第3个和第5个图形不具备梯形的特征,第3个图形没有一组对比平行,第5个图形不是四边形。

⑤归纳总结梯形的概念。

教师:看来同学们对梯形的认识很深刻,你能用一句比较简练的语言说一说什么是梯形吗?

学生:只有一组对边平行的四边形叫做梯形。

5、认识梯形的各部分名称。

(1)介绍梯形的底和腰。

教师:你知道四条边在梯形中叫什么吗?

学生:平行的一组对边分别叫梯形的上底和下底,不平行的一组对边叫梯形的腰。

(2)介绍梯形的高。

教师:什么是梯形的高?

学生:从上底的一个点出发向下底作一条垂线,这条垂线段叫做梯形的高。

教师:梯形有多少条高?

学生:梯形的高有无数条,只要夹在两条平行线之间,也就是两底之间的垂线段,都是梯形的高。

(三)内化理解,沟通联系

教师:刚才我们对梯形有了一个完整的、全面的认识。现在我们来打开学具袋,找出梯形。没有,那我们就利用这些平面图形制作一个梯形吧。

要求:每个图形只沿直线剪一下,使之变成梯形。四人一组,合作完成。

1、内化理解。

(1)用长方形剪出直角梯形。

教师:谁是用长方形材料剪的?你是怎么剪的?

学生汇报。

预设:

看看他剪的梯形有什么特点?

教师:有一个角是直角的梯形叫做直角梯形。

在剪裁的过程中,你发现哪几个图形在剪裁的方法上与长方形有共同之处?同样是四边形为什么任意四边形的裁剪方法不同?

小结:平行四边形、长方形、正方形都是两组对边分别平行的四边形,所以只需要破坏一组对边的平行关系;而任意四边形则需要创造出一组具有平行关系的对边。

2、沟通联系。

(1)现在我们都已经认识了哪些四边形?

(2)我们用一个椭圆形的大圈表示所有的四边形,这个椭圆形的圈就表示所有的长方形,以此类推分别表示正方形、平行四边形和梯形。

(3)长方形、正方形、平行四边形和梯形都属于四边形,课件演示:长方形、正方形、平行四边形和梯形进入四边形的大圈,能这样表示它们之间的关系吗?

(4)相互说一说应该怎样表示出这些四边形之间的关系,为什么?

让学生两人一组适当交流,在本上画一画。

(5)结合学生的回答,教师逐步完善关系图,课件呈现:

3 巩固提升

1、选择:(课件出示)

上图中相对应的底和高是( B D )。

A.6和1  B.5和4   C.2和4  D.3和1

2、说一说下图平行四边形的底和高分别是多少厘米?(每个方格边长1厘米)

课后小结

这节课学习了什么?你有什么收获?(小组说--组内总结--组间交流)

1、认识平行四边形和梯形,了解平行四边形和梯形的特征。

2、使学生了解长方形、正方形、平行四边形和梯形四种图形的关系。

3、认识平行四边形的不稳定性。

板书

平行四边形和梯形

平行四边形:两组对边分别平行的四边形叫做平行四边形。

梯形:只有一组对边平行的四边形叫梯形。

四边形之间的关系:

篇五:数学七年级上册教学设计 篇五

教学目标

(一)通过复习一位数乘整百整十数不进位的口算,学生理解并掌握一位数乘两位数进位乘法的口算方法,能正确地进行一位数乘两位数的口算。

(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,能够比较熟练地进行口算。

教学重点和难点

重点:在理解的基础上,掌握用一位数乘的口算过程。

难点:理解并掌握满十向前一位进“1”的算理。

教学过程 设计

(一)复习准备

投影出示口算题:

(用纸板覆盖,一题一题出示)

10×5

14×2

100×7

130×2

20×3

34×2

200×4

210×3

教师提问:14×2请你说一说口算过程。(学生回答10×2=20,4×2=8,20+8=28)

教师追问:那么你能不能说一说140×2又是怎样口算的呢?(同座位的两个小朋友互相说一说)然后请同学回答(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)

教师揭示课题:(板书:一位数乘两位数、乘整百整十数)

(二)学习新课

出示例1:板书:口算14×3.

想一想 14×3的意义是什么?(3个14是多少)

根据14×3的意义,用小棒摆出来。

想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.

板书:14×3=42.

比较14×3与14×2两道口算的异同:

(同桌或四人小组的同学互相启发进行讨论)然后请同学回答:两道题口算过程是一样的。都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满  了十,最后一步是整十加上两位数。

做一做

投影出示:

16×2=

26×3=

25×2=

要求同学在练习本上直接写出结果。再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上。待同学写完后集体订正。

分别请同学说出口算过程。

16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.

26×3,25×2分别请同学互相说,集体说,个人说。反复叙述口算过程。

出示例2:板书:口算:140×3=

请同学想一想应该怎样做,然后试做。(教师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的。

集中起来说出不同的想法:

因为14×3=42,那么140×3只需在42后面添上一个0得420.

把140看成14个十,14个十乘3得42个十,即420.

3乘14得42,然后再在得数后面添上一个0.

以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励。

做一做

投影出示:

130×5=

380×2=

150×6=

每人在自己本上直接写出结果。四人小组进行讨论,能用几种方法说出口算过程。

小结 今天我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”。

(三)巩固反馈

1、基本练习:(投影出示)

首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学互相说一说。最后集体订正。

2、填空练习:(投影出示)

明确题目要求后,在课本上填括号。

订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程。

3、找朋友游戏。

15×3

18×2

12×5

14×4

35×2

220×4

240×3

25×4

310×3

32×3

26×2

160×6

12×4

16×5

14×3

36×2

120×4

160×5

240×2

260×2

题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的朋友。

45

36

60

56

70

880

720

100

910

96

52

960

48

90

72

42

480

900

480

520

4、文字叙述题。

投影片出示,同学们在作业 本上做。四个同学写在小黑板上,订正时用。

(1)乘数是7,被乘数是12,积是多少?

12×7=84

(2)250的3倍是多少?

250×3=750

作业 :看书第1页。

课堂教学设计说明

本节课教学内容口算“一位数乘两位数、乘整百整十数”。首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新知识做准备。

讲授新课例1时,抓住满十进一这一难点,以旧知识引出新知识,通过新旧知识的比较,突出新旧知识的连接点,通过学生自己动手、动脑、动口获取知识,体现以学生为主体。使学生真正悟出新旧知识的内在联系。

通过形式多样的练习,达到能准确、迅速地口算的目的。

板书设计

篇六:七年级上册数学数轴教案 篇六

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学重难点

教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

1、学生观看钟祥二中相关背景视频

意图:吸引学生注意力,激发学生自豪感。

2、联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1、马路用什么几何图形代表?(直线)

2、文中相关地点用什么代表?(直线上的点)

3、学校大门起什么作用?(基准点、参照物)

4、你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

学生画图后提问:

1.0代表什么?

2、数的符号的实际意义是什么?

3.-75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的`作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1、什么样的直线叫数轴?它具备什么条件。

2、如何画数轴?

3、根据上述实例的经验,“原点”起什么作用?

4、你是怎么理解“选取适当的长度为单位长度”的?

师生活动:

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1、判断下列图形是否是数轴。

2、口答:数轴上各点表示的数。

3、在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1、什么是数轴?

2、数轴的“三要素”各指什么?

3、数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1、下列命题正确的是()

A.数轴上的点都表示整数。

B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C.数轴包括原点与正方向两个要素。

D.数轴上的点只能表示正数和零。

2、画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3、画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是________。

五、板书

1、数轴的定义。

2、数轴的三要素(图)。

3、数轴的画法。

4、性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书P8页:

1、什么样的直线叫数轴?

定义:规定了_________、________、_________的直线叫数轴。

数轴的三要素:_________、_________、__________。

2、画数轴的步骤是什么?

3、“原点”起什么作用?__________

4、你是怎么理解“选取适当的长度为单位长度”的?

练习:

1、画一条数轴

2、在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

活动三:议一议

小组讨论:观察你所画的数轴上的点,你有什么发现?

归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

练习:

1、数轴上表示-3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

2、距离原点距离为5个单位的点表示的数是________。

3、在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

附:目标检测

1、下列命题正确的是()

A.数轴上的点都表示整数。

B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C.数轴包括原点与正方向两个要素。

D.数轴上的点只能表示正数和零。

2、画数轴,在数轴上标出-5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

3、画数轴,观察数轴,在原点左边的点有_______个。

篇七:七年级数学上册教案 篇七

【教学目标】

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

【重点难点】

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

【教学准备】

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

【教学过程】

一、创设情境

多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.

设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.

二、讨论(动态研究)

课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

观察、讨论.让学生共同体会“点动成线、线动成面、面动成体。

让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

三、讨论(静态研究)

教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

四、探索

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

五、作业

1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.

2、阅读教科书第119页的实验与探究,并思考有关问题。

篇八:七年级数学上册教案 篇八

第一课时

教学目的

让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。

重点、难点

1.重点:通过分析图形问题中的数量关系,建立方程解决问题。

2.难点:找出“等量关系”列出方程。

教学过程

一、复习提问

1.列一元一次方程解应用题的步骤是什么?

2.长方形的周长公式、面积公式。

二、新授

问题3.用一根长60厘米的铁丝围成一个长方形。

(1)使长方形的宽是长的专,求这个长方形的长和宽。

(2)使长方形的宽比长少4厘米,求这个长方形的面积。

(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。

(4)当长方形的长为18厘米,宽为12厘米时

长方形的面积=18×12=216(平方厘米)

当长方形的长为17厘米,宽为13厘米时

长方形的面积=221(平方厘米)

∴(1)中的长方形面积比(2)中的长方形面积小。

问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。

实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。

三、巩固练习

教科书第14页练习1、2。

第l题等量关系是:圆柱的体积=长方体的体积。

第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。

四、小结

运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。

五、作业

教科书第16页,习题6.3.1第1、2、3。

第二课时

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

重点、难点

1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价-成本 ; =商品利润率

二、新授

问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息-利息税=48.6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×X×2,利息税为2.43%X×2×20%

根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

2.43%x·2·80%=48.6

解方程,得 x=1250

例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%-x

由等量关系,列出方程:

(1+40%)x·80%-x=15

解方程,得 x=125

答:每件服装的成本是125元。

三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

五、作业

教科书第16页,习题6.3.1,第4、5题。

三课时

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

第四课时

教学目的

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

重点、难点

重点:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程

一、复习提问

1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授

阅读教科书第18页中的问题6。

分析:

1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的工作量+徒弟做的工作量=1)

[先要求出师傅与徒弟各完成的工作量是多少?]

两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

师傅完成的工作量为= ,徒弟完成的工作量为=

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;

请你提出问题,并加以解答。

例如 (1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结

1、本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即 工作量=工作效率×工作时间工作效率= 工作时间

2、解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业

教科书习题6.3.3第1、2题。

221381
领取福利

微信扫码领取福利

微信扫码分享