好文档 - 专业文书写作范文服务资料分享网站

2024中考数学第二轮复习专题(10个专题)

天下 分享 时间: 加入收藏 我要投稿 点赞

A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙

44.如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( ) A.2.5cm B.3.0cm C.3.5cm D.4.0cm

45.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是( ) A.3

B.4

C.5

D.7

46.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=3003米,则这段弯路的长度为( ) A.200π米

B.100π米

C.400π米

D.300π米

47.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( ) A.4 B.5 C.6 D.7

48.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( ) A.AD=DC

? AD?DCB.?C.∠ADB=∠ACB D.∠DAB=∠CBA

49.一张圆形纸片,小芳进行了如下连续操作:

(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.

(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示. (3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示. (4)连结AE、AF,如图(5)所示. 经过以上操作小芳得到了以下结论:

①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=33:4π, 以上结论正确的有( ) A.1个 B.2个 C.3个 D.4个

50.如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题: 2009年恩施州各县市的固定资产投资情况表:(单位:亿元) 单位 投资额 恩施市 60 利川县 28 建始县 24 巴东县 23 宜恩县 14 咸丰县 16 来凤县 鹤峰县 15 州直 5

下列结论不正确的是( )

A.2009年恩施州固定资产投资总额为200亿元

B.2009年恩施州各单位固定资产投资额的中位数是16亿元 C.2009年来凤县固定资产投资额为15亿元

D.2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°

专题二 新定义型问题

一、中考专题诠释

所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力

二、解题策略和解法精讲

“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移. 三、中考典例剖析

考点一:规律题型中的新定义

例1 阅读下面的材料,先完成阅读填空,再按要求答题: sin30°=31,cos30°=,则sin230°+cos230°= ;① 2222,cos45°=,则sin245°+cos245°= ;② 2231,cos60°=,则sin260°+cos260°= .③ 22sin45°=sin60°=… 观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④ (1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想; (2)已知:∠A为锐角(cosA>0)且sinA=3,求cosA. 5 对应训练 1.我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题: (1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:AO2?; AD3(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足AO2试判断O是△ABC?,AD3的重心吗?如果是,请证明;如果不是,请说明理由; (3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究 的最大值. S四边形BCHGSVAGH 考点二:运算题型中的新定义 例2 定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1?=-5。 (1)求(-2)⊕3的值; (2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来. 对应训练 2.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4. (1)如果[a]=-2,那么a的取值范围是 . (2)如果[x?1]=3,求满足条件的所有正整数x. 2考点三:探索题型中的新定义 例3定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A.2 B.3 C.4 D.5

对应训练 3.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”. (1)请用直尺和圆规画一个“好玩三角形”; (2)如图在Rt△ABC中,∠C=90°,tanA= 3,求证:△ABC是“好玩三角形”; 2(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s. ①当β=45°时,若△APQ是“好玩三角形”,试求a的值; s②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围. (4)(本小题为选做题,作对另加2分,但全卷满分不超过150分) 依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1) 考点四:开放题型中的新定义 例4若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形. (1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线; (2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形; (3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数. . 对应训练 4.用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格

2024中考数学第二轮复习专题(10个专题)

A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙44.如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.2.5cmB.3.0cmC.3.5cmD.4.0cm45.半径为3的圆中,一条弦长为4
推荐度:
点击下载文档文档为doc格式
9q7ts4f7nl03ypi6bk157e16g2f50200oq1
领取福利

微信扫码领取福利

微信扫码分享