好文档 - 专业文书写作范文服务资料分享网站

过氧化氢作为环境胁迫指标在植被管理中的应用 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

T.Asaedaetal./Engineering4(2018)610–616615Fig.11.(a)Distribution(numberoftrees)oftwowoodyspecieswithelevationfromthenormalwaterlevelofHiiRiver;(b)distributionofH2O2contentoftwowoodyspecieswithelevationfromthenormalwaterlevelofHiiRiver.showedareductioningrowthandincellplasmolysis,andanaccumulationofstarchgranules,whereinthesizeofthegranulesincreasedwithturbulence[18].Inaddition,themechanicalstresstriggeredbyturbulenceledtotheaccumulationofascorbate,c-aminobutyricacid(GABA),andasparagine(Asn),thusalteringseveralmetabolicpathwaysinE.nuttallii—inparticular,theisocitrate-oxalate,glutamicacid-histidine(Glu-His),Glu-GABA,ascorbate-oxalateandasparticacid-asparagine(Asp-Asn)path-ways.Turbulenceisalwaysassociatedwithamean?owgreaterthanthecritical?owvelocitygivenbytheReynoldsnumber,whichmakesitdif?culttodeterminewhichcreatesstress:mean?owvelocityorturbulence.However,theresultofthemicrocosmsetupclearlyindicatedthatturbulenceintensityisthedominantstressorformacrophytes,ratherthanmean?ow.AnotherenvironmentaldriveraffectingaquaticorganismsisH2S.Atitsoptimumlevel,H2Splaysanimportantroleinthebio-logical,physical,andchemicalprocessesinanaquaticecosystem.IthasbeenreportedthatalowconcentrationofH2Scanpromoteplantgrowth[19].However,biochemicalprocessessuchasmicro-bialorganicmatterdegradationanddissimilatorysulfatereductionwaterloggedandhypoxicsoilconditioncouldgenerateanexces-siveamountofH2S[20,21].HigherlevelsofH2Saretoxictomanyaquaticorganismsincludingthemacrophytes,affectingtheirphys-iologyandconsequentlyinducedstress[20–23].TheexperimentalresultsontheeffectsofH2SclearlydemonstratedthathigherH2StreatmentinducedahigherordermagnitudeofoxidativestresstomacrophytescomparedwithlowerH2Streatment,asre?ectedinthehighH2O2concentrations.HighconcentrationsofH2Simposedhighstressonthesubmergedmacrophytes,resultinginoxidativestressandsubsequentlyreducingplantdevelopment[10].Inaddition,ahighconcentrationofH2Sinanaquaticenviron-mentisknowntodepletetheDOinwaterbyincreasingtheoxygendemandrate;thus,itcreatesananoxiccondition.Theanoxiccon-ditionconsequentlyinterfereswithnutrientuptakeandwiththeprocessesofphotosynthesisandmetabolism[24,25].IncreasingH2O2concentrationsintissuesleadtocellulardamage,thusalteringplantdevelopmentandphysiology[2,26].AlthoughtheplantactivatesitsROSscavengingsystemsasanatu-raldefensemechanism[5],thecontinuousproductionandaccu-mulationofH2O2resultsineventualdamagetotheorganelles.Asaresult,H2O2accumulationdecreasesthegrowthrateofplantspeciesandweakenstheirabilitytocompetewithotherspeciesinordertoexpandtheirterritory[27].Variousenvironmentaldriverssuchasturbulence,lowoxygen,andH2Sareknownphysicalandbiochemicalprocessesthatadverselyaffectthedevelopmentanddistributionofaquaticplants.Inevitably,thesefactorselicitbiochemicalstressresponses.TheuseofbiochemicalevidenceintheformofROShasbeenwidelyemployedasanindicatortoevaluateplantstressresponsestodifferentabioticandbioticsourcesofstress.AmongROS,H2O2isthemoststableandisrelativelyeasytomeasure.4.2.EffectofsolarradiationFieldobservationsshowedthatthelight-exposedsampleshadhigherH2O2concentrationsthanthedarkness-treatedsamples.ThisisbecauseasubstantialamountofROSisgeneratedduringphoto-synthesisatphotosyntheticcomplexes.TheaccumulationofROScreateshighPPFD-induceddamagetoorganellesinthesystemandreducesphotosynthesisandgrowthrate.Unliketerrestrialplants,whichevolvedunderstrongsolarradiation,submergedmacrophyteshaveextremelylowtoleranceforstrongsolarradiation.Duringthehighseasonofmacrophytegrowth,ashortageofsolarradiationisconsideredtobearestrictingfactorformacro-phytecolonizationinlakesandrivers[28].However,thepresentresultsindicatedthatstronglightisalsoaninhibitingfactorformacrophytegrowthinsuf?cientlytransparentwaters.Inshallowwaters,thehighlightintensityatthebottomappearstohampermacrophytecolonization.Deepsites(i.e.,waterover1.5mdeep)withclearwater,wherethelightintensityatthebottomisnottoohigh,providemoresuitableconditionsformacrophytegrowth.Furthermore,alightintensityof200–300lmolámà2ásà1PPFDmeasuredatthemiddleofthewatercolumnappearstostronglypromotetheincreaseofmacrophytebiomass.Inaddition,thegreatergrowthofmacrophytesatmediumdepths(i.e.,1mdepths)inriversratherthanatshallowdepthsisexplainedbysolarradia-tion,whichimposesstressesonmacrophytesthatarecomparableorevenhigherthan?owvelocity.4.3.EffectoncompetitivespeciesPhragmitesaustralisandMiscanthussacchari?orusaretwomajorspeciesinJapaneseriverriparianzones.Althoughbothgrowwidelyinripariansites,thesequenceofcomparisonsperformedinthisstudyindicatedthatPhragmitesaustralisoccupiesareasclosertothewaterwhereasMiscanthussacchari?orusstandsdevelopinhigherzones[29–31].TheH2O2concentrationsoftheleavesobtainedinthepresentstudywereexactlyconsistentwiththistrend:TheywerelowclosetothewaterandhighatelevatedsitesforPhragmitesaustralis,buthighatlowsitesandlowathighzonesforMiscanthussacchari?orus.Furthermore,Phragmiteskarkatypicallygrowsindependentlyinhabitats,giventheirlargemorphology,andtheunclearrelationshipbetweenH2O2concen-trationsandelevationisconsistentwiththeirwidedistributionalongriversides.Conversely,bothSalixpierotiiandJuglansmandshuricaarecommonspeciesintheHiiRiverarea[30].However,theirhabitatsaresegregated,withSalixpierotiigrowing616T.Asaedaetal./Engineering4(2018)610–616nearthewaterandJuglansmandshuricaoccupyingelevatedsites.Thetrendwasclearlyre?ectedbytheirH2O2distributions.TheseresultsconsistentlysupporttheapplicabilityofH2O2con-centrationasanindicatorofenvironmentalstressgradientiniden-tifyingdominantcolonizationsitesforcompetingplantspecies.4.4.ApplicationtovegetativemanagementCommonapproachestovegetationmanagementarebasedonadaptivemethods.Severaltypesoftreatmentsareemployediteratively.Duringeachtreatment,thegrowthandprosperityorshrinkageofmanagedstandsaremonitoredoveralongperiodbeforeasuitabletreatmentis?xedandimplemented.Theseapproachesrequirelong-termcommitmentsandlargecosts.Duringendangeredspeciesrestoration,theseapproachesoftentaketoolongtosuccessfullyrestorethetargetspecies.Harvestingistheprimarymethodofweedmanagement,althoughitisextremelylaborious.Ifconditionsthatareunfavor-abletothetargetspeciesareknown,itispossibletoemploynon-laboriousmethodsofweedremoval.Thepresentstudypro-posesaquickmonitoringsystemforplantconditionsthatutilizesrelativelyeasymethods,includingsamplingandsomechemicalanalyses,toevaluatetheoxidativestressintroducedbyenviron-mentalstressors.Furthermore,thismethodquanti?estheeffectofthetotalenvironmentalstressontheplants.Thisapproachcouldalsobeappliedtoidentifythedominantstressoramongapracticalnumberofcandidates.5.ConclusionTheresultsofthelaboratoryexperimentand?elddatashowedtheexistenceofarelativelyuniquetrendandrelationshipbetweenH2O2concentrationandenvironmentalstressgradients(particu-larlyturbulenceandH2S).BasedontherelationshipbetweenH2O2andthestressgradient,theeffectsofdifferentsourcesofstressescouldbeseparatedwithhigheraccuracy.Thus,theuseofbiochem-icalstressresponsesholdspotentialasameansofprovidingevidenceofenvironmentalstressorsandasanindicatorforidentify-ingthesourcesofplantstress.FutureexperimentsperformedunderdifferentlaboratoryconditionswillprovideusefuldataforadoptingtheproposedH2O2monitoringmethodasapromisingtechniqueforunderstandingplantconditionsinvariousenvironments.AcknowledgementsThisworkwas?nanciallysupportedbygrant-in-aidfromtheJapanSocietyforthePromotionofScience,Scienti?cResearch(15H04045),DevelopmentGrantforRiverManagementTechnol-ogyfromtheMinistryofLand,Infrastructure,TransportationandTourism,Japan,RiverFundfromtheRiverFoundationofJapan,andWatershedEcologyResearchGroupofWEC.CompliancewithethicsguidelinesTakashiAsaeda,SenavirathnaMudaligeDonHiranyaJayasanka,Li-PingXia,andAbnerBarnuevodeclarethattheyhavenocon?ictofinterestor?nancialcon?ictstodisclose.References[1]AsadaK.Productionandscavengingofreactiveoxygenspeciesinchloroplastsandtheirfunctions.PlantPhysiol2006;141(2):391–6.[2]SharmaP,JhaAB,DubeyRS,PessarakliM.Reactiveoxygenspecies,oxidativedamage,andantioxidativedefensemechanisminplantsunderstressfulconditions.JBot2012;2012:1–26.[3]MittlerR.Oxidativestress,antioxidantsandstresstolerance.TrendsPlantSci2002;7(9):405–10.[4]FoyerCH,ShigeokaS.Understandingoxidativestressandantioxidantfunctionstoenhancephotosynthesis.PlantPhysiol2011;155(1):93–100.[5]SuzukiN,KoussevitzkyS,MittlerR,MillerG.ROSandredoxsignallingintheresponseofplantstoabioticstress.PlantCellEnviron2012;35(2):259–70.[6]EllawalaC,AsaedaT,KawamuraK.In?uenceof?owturbulenceongrowthandindoleaceticacidandH2O2metabolismofthreeaquaticmacrophytespecies.AquatEcol2011;45(3):417–26.[7]EllawalaC,AsaedaT,KawamuraK.Theeffectof?owturbulenceongrowth,nutrientuptakeandstablecarbonandnitrogenisotopesignaturesinChara?brosa.AnnLimnolIntJLim2012;48(3):349–54.[8]ClineJD.Spectrophotometricdeterminationofhydrogensul?deinnaturalwaters.LimnolOceanogr1969;14(3):454–8.[9]NapoliAM,Mason-PlunkettJ,ValenteJ,SucovA.Fullrecoveryoftwosimultaneouscasesofhydrogensul?detoxicity.HospPhysician2006;42:47–50.[10]ParveenM,AsaedaT,RashidMH.Hydrogensul?deinducedgrowth,photosynthesisandbiochemicalresponsesinthreesubmergedmacrophytes.Flora2017;230:1–11.[11]ParveenM,AsaedaT,RashidMH.Biochemicaladaptationsoffoursubmergedmacrophytesundercombinedexposuretohypoxiaandhydrogensulphide.PLoSOne2017;12(8):e0182691.[12]AtapaththuKSS,AsaedaT,YamamuroM,KamiyaH.Effectsofwaterturbulenceonplant,sedimentandwaterqualityinreed(Phragmitesaustralis)community.Ekologia(Bratisl)2017;36(1):1–9.[13]Riverenvironmentaldatabase[Internet].Tokyo:MinistryofLand,Infrastructure,TransportationandTourism,Inc.;c2007[updated2018May24;cited2017Oct8].Availablefrom:http://mizukoku.nilim.go.jp/ksnkankyo/03/index.htm.[14]PorraRJ,ThompsonWA,KriedemannPE.Determinationofaccurateextinctioncoef?cientsandsimultaneousequationsforassayingchlorophyllsaandbextractedwithfourdifferentsolvents:veri?cationoftheconcentrationofchlorophyllstandardsbyatomicabsorptionspectroscopy.BBABIO1989;975:384–94.[15]JanaS,ChoudhuriMA.Glycolatemetabolismofthreesubmersedaquaticangiospermsduringageing.AquatBot1982;12:345–54.[16]GordonSA,WeberRP.Colorimetricestimationofinodoleaceticacid.PlantPhysiol1951;26(1):192–5.[17]ChalanikaDeSilvaHC,AsaedaT.StressresponseandtoleranceofthesubmergedmacrophyteElodeanuttallii(Planch.)St.Johntoheatstress:acomparativestudyofshockheatstressandgradualheatstress.PlantBiosyst2018;152(4):787–94.[18]AtapaththuKSS,MiyagiA,AtsuzawaK,KanekoY,Kawai-YamadaM,AsaedaT.Effectsofwaterturbulenceonvariationsincellultrastructureandmetabolismofaminoacidsinthesubmersedmacrophyte,Elodeanuttallii(Planch.)H.St.John.PlantBiol2015;17(5):997–1004.[19]DooleyFD,NairSP,WardPD.Increasedgrowthandgerminationsuccessinplantsfollowinghydrogensul?deadministration.PLoSOne2013;8(4):e62048.[20]HouZ,WangL,LiuJ,HouL,LiuX.Hydrogensul?deregulatesethylene-inducedstomatalclosureinArabidopsisthaliana.JIntegrPlantBiol2013;55(3):277–89.[21]GeurtsJJM,SarneelJM,WillersBJC,RoelofsJGM,VerhoevenJTA,LamersLPM.Interactingeffectsofsulphatepollution,sulphidetoxicityandeutrophicationonvegetationdevelopmentinfens:amesocosmexperiment.EnvironPollut2009;157(7):2072–81.[22]LisjakM,TeklicT,WilsonID,WhitemanM,HancockJT.Hydrogensul?de:environmentalfactororsignallingmolecule?PlantCellEnviron2013;36(9):1607–16.[23]WuJ,ChengS,LiangW,HeF,WuZ.EffectsofsedimentanoxiaandlightonturiongerminationandearlygrowthofPotamogetoncrispus.Hydrobiologia2009;628(1):111–9.[24]KingGM,KlugMJ,WiegertRG,ChalmersA.Relationofsoilwatermovementandsul?deconcentrationtoSpartinaalterni?oraproductioninaGeorgiasaltmarsh.Science1982;218(4567):61–3.[25]HolmerM,FrederiksenMS,M?llegaardH.Sulfuraccumulationineelgrass(Zosteramarina)andeffectofsulfuroneelgrassgrowth.AquatBot2005;81(4):367–79.[26]CheesemanJM.Hydrogenperoxideandplantstress:achallengingrelationship.PlantStress2007;1:4–15.[27]ChalanikaDeSilvaHC,AsaedaT.Effectsofheatstressongrowth,photosyntheticpigments,oxidativedamageandcompetitivecapacityofthreesubmergedmacrophytes.JPlantInteract2017;12(1):228–36.[28]BuntJ.Lightandphotosynthesisinaquaticecosystems.AquatBot1995;50(1):111–2.[29]AsaedaT,SiongK,KawashimaT,SakamotoK.GrowthofPhragmitesjaponicaonasandbarofregulatedriver:morphologicaladaptationoftheplanttolowwaterandnutrientavailabilityinthesubstrate.RiverResAppl2009;25(7):874–91.[30]SanjayaK,AsaedaT.Assessingtheperformanceofariparianvegetationmodelinariverwithalowslopeand?nesediment.EnvironTechnol2017;38(5):517–28.[31]AsaedaT,SanjayaK.Theeffectoftheshortageofgravelsedimentinmidstreamriverchannelsonriparianvegetationcover.RiverResAppl2017;33(7):1107–18.Engineering 2 (2016) xxx–xxxContents lists available at ScienceDirect

Engineering

ResearchWatershed Ecology—Article过氧化氢作为环境胁迫指标在植被管理中的应用Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, JapanTakashi Asaeda*, Senavirathna Mudalige Don Hiranya Jayasanka, LiPing Xia, Abner Barnuevoa r t i c l e i n f oArticle history:Received 11 December 2017Revised 17 May 2018Accepted 3 September 2018Available online 8 September 2018摘要适应性植被管理非常耗时,其需要长时间的野外监测以获取可靠的数据。目前适应性植被管理手段虽已被广泛应用,但在进行栖息地状况评估时,仍然依赖于长时间的野外观测。目前的植被相

ROS 中,过氧化氢(H2O2)关研究中,活性氧类(ROS)已经被视为一种环境胁迫指标。在这些

H2O2 含量可以被用作岸生和水生植被管理过程相对稳定,并且可以被准确、方便地量化。植物中

的胁迫指标,同时可以用来评估栖息地中单一植物物种的生长状况。本研究证明了植被管理中应H2O2 作为定量化环境胁迫指标的可行性。在实验室和野外(日本的真嗣湖、沙巴河、伊诺河和用

H2O2 情况的研究,结果海河)条件下,分别开展了不同胁迫程度下大型水生植物和岸生植物生成

表明H2O2 可以作为环境管理中的胁迫指标。

关键词大型植物河岸边区域环境梯度胁迫指标活性氧类过氧化氢? 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher

Education Press Limited Company This is an open access article under the CC BY-NC-ND license

1.引言植被管理在植被恢复、濒危物种保护和杂草管控中发挥着重要的作用。在适应性植被管理中,通常需要使用长时间观测的数据。长时间观测是确定植被状况的最常见方法,但其需要较多的时间和金钱成本。植物群落规模的增长和减少取决于环境胁迫和植物耐受性之间的关系。如果能够调整植被的耐受性,那么整体环境胁迫的相对强度可以用来表征合适的栖息地状况水平。同样,为了表征植物的现有状况和预测未来状况,评估植被所受的环境胁迫是十分必要的。有关环境胁迫对植物影响的研究结果表明,一些植物的植株体征会受到环境胁迫的影响[1,2]。活性氧类(ROS)的积累程度可用于识别作用在植物上的环境胁迫程度,但这一现象在现实环境中很少被关注[3–5]。在ROS中,过氧化氢(H2O2)在植被的多个部位生成,如叶绿体、线粒体、过氧化物酶体和细胞膜等。H2O2相对稳定,并且容易被生物膜转运。与其他ROS[如超氧·–]相比,H2O2可化物自由基(O2)和氢氧自由基(·OH)以被方便地检测到,且损失最小,在植物学研究中被广泛地用于识别ROS造成的植被损伤和环境胁迫程度。本研究旨在阐明H2O2作为定量植物环境胁迫指标应用于环境胁迫识别的适用性。本研究将对实验室和自然状况下大型沉水植物和陆生植物产生的H2O2进行分析,* Corresponding author. E-mail address: asaeda@mail.saitama-u.ac.jp (T. Asaeda) 672Author name et al. / Engineering 2(2016) xxx–xxx并在实验室条件下探讨大型沉水植物——埃格草(Egeria densa)、苦草(Vallisneria asiatica)、菹草(Potamogeton crispus)和伊乐藻(Elodea nuttallii)等对湍流胁迫的响应程度,以及在实验室条件下穗花狐尾藻(Myriophyllum spicatum)对硫化氢(H2S)胁迫的适应性。本研究在自然条件下对日本的真嗣湖、沙巴河和伊诺河的眼子菜(P. anguillanus)和埃格草的光反应实验适应性进行研究,并沿着海河两岸观察岸生植物[芦苇(Phragmites australis)、卡开芦(Phragmites karka)、南荻(Miscanthus sacchariflorus)、白皮柳(Salix pierotii)和胡桃楸(Juglans mandshurica var. sieboldiana)]的状况。2. 材料和方法2.1. 植被的存储与培养在近岸处采集的埃格草、苦草、菹草、伊乐藻和穗花狐尾藻,用去氯自来水冲洗,去除附着的杂物。当附着藻类时,用镊子仔细清理植物。在实验室条件下([25 ± 2)℃,12/12日光灯光照,光通量密度(PPFD)为100~120 μmol?m–2?s–1],将植物栽培于玻璃容器中数月。将玻璃容器彻底清洗,在其中分层堆放商品沙(90% 的沙粒直径小于1 mm)作为基质,提供霍格兰溶液作为营养源。在植被移植之前,观察是否有藻类附着,并且挑选无藻类的植物进行实验研究。2.2. 湍流胁迫实验实验材料为苦草、眼子菜和伊乐藻。在一个配有4 cm沙层且被彻底清洗过的玻璃容器(5.7 cm × 15.7 cm,高度为24.5 cm)中进行实验。从培养箱中剪掉同样大小的顶端尖端(3~5 cm)。每个实验箱种植6株植物。每个箱中的水位(营养物为5%霍格兰溶液)维持在高于基质17 cm处。根据已发表的文献[6,7],可以利用一个振荡频率为2 Hz、振幅为3 cm的垂直振荡水平栅格产生湍流。按照操作规定,直流电发电机在微观尺度产生的湍流相对较小。应用二维电磁流仪器(SF-5712,Tokyo Keisoku公司,日本)测定该区域的6个对称点处的微观尺度水平流速场。分别在水面下5 cm、10 cm和15cm 3个深度监测每一个点的流速波动。通过在每个深度6次测定后取平均值的方法来计算湍流的流速。在湍流胁迫实验一周前,植物需要适应新的实验环境[(25 ± 2)℃,12/12日光灯光照, PPFD为100~120 μmol?m–2?s–1]。在此之后,植物被连续不断地暴露在湍流胁迫中,持续21 d。在暴露之后,立即对实验组和对照组进行化学分析。2.3. 硫化氢胁迫实验去除穗花狐尾藻的两个顶端尖端后,将其插入海绵块中,放进500 mL的玻璃烧杯。以不添加其他溶剂的5%霍格兰溶液作为培养基。植物生长在0.0 mmol·L–1(对照组)、0.1 mmol·L–1、0.2 mmol·L–1、0.5 mmol·L–1、1.0 mmol·L–1 H2S暴露的烧杯中,每个浓度设置3个平行样品。在H2S暴露实验中,硫氢化钠(NaHS)作为H2S的供体。H2S溶液通过二元胺-甲基蓝比色法测定浓度[8]:4 mL混合二元胺与50 mL水样混合,20 min后使用分光光度法在670 nm处测定吸光度。应用NaHS校准标准测定其浓度,浓度单位为mmol·L–1。每隔24 h(通过H2S的短半衰期计算得到[9])更换新的培养基。通过加入1 mol·L–1的NaOH或H2S,使pH值保持在5.0~5.5[10,11]。测量最初和最终的茎长后,计算茎长差值,测定实验时长后计算相对生长率(SGR)。2.4. 实地观察2.4.1. 采样点真嗣湖(Shinji Lake)是日本西部的一个盐水湖,因盛产蚬(Corbicula)等双壳类而闻名。目前大型植物菹草生长茂盛,取代了湖底部原有的沉积物,从而严重影响了蚬类的生长[12]。阐明菹草集中生长和分布的原因,对其管理十分必要。本研究于2017年8月22日进行了实地观察,并在海平面到2.5 m深范围内,沿着两个样带采集大型植物样品。近期,入侵物种埃格草在日本西部之前没有大型植物生长的很多河中出现[13]。埃格草的入侵阻碍了香鱼(一种日本常见的淡水鱼)产卵,并且显著减少了香鱼的捕获量。本研究在沙巴河(Saba River)和伊诺河(Eno River)的几个样带进行了实地观察。于2016年6月11日到15日及9月16日到17日,在这些样点进行采样和观测。另外,于2016年11月11日到13日采集海河(Hii River)的样品。每个样品的采样点设置在每条河流埃格草生长较厚且均匀的地方,或者流速相对较高并且生物量较小的地方。在每一个采样点,每隔2~5 m进行采样和测定。在20%(高于栖息地)和80%(栖息地中)水深处用超声波速度计测定并记录流速。Author name et al. / Engineering 2(2016) xxx–xxx6732.4.2. 水下大型植物采样步骤菹草植物样品从两个样带(Tr1和Tr2)的不同深度处采集,并且存储在装有干冰的冷却箱中。采集的样品以最快的速度转移到实验室中进行化学分析。每个样方(0.5 m×0.5 m)采集3份平行样品。水中光照强度和PPFD使用便携式量子光通量计(Apogee,MQ-200,美国),从底部到顶部每10 cm测定一次。此外,pH值、浊度、温度和溶解氧(DO)用便携式水质仪(U-53,Horiba公司,日本)测定。光合作用会产生大量ROS。为了去除光合作用产生的H2O2,本研究设置了黑暗培养对照实验。在黑暗培养实验中,放置一个2 m×2 m的黑色塑料板于沉水植物栖息地上30 min。在流水中,用铁杆固定黑色塑料板,使它漂浮在水面上,并且塑料板应不影响大型植物生长区和栖息地附近的流速。植物样品在水深80%处进行无光采集。同样,光照射样品应在未被塑料板覆盖过的大型植物处采集。2.4.3. 河岸区采样步骤在海河特定的芦苇、卡开芦和南荻生长界限明显的区域进行采样。沿着垂直于河的方向,在不同的高度7 m处)处采集草本样品。河岸区域长有较多的白皮柳和胡桃楸等日本河流中常见的植物。河岸上的树种对定殖位置有各自适合的高度。在真嗣湖下游14 km处,沿着典型水位高度处2 km的河岸区,分别对白皮柳和胡桃楸进行计数。采集太阳照射暴露组与黑暗实验组的树叶,用于化学分析。所有植物样品在采集后,立即放置在装有干冰的冷却箱中,运到实验室进行分析。2.5. 化学分析对2.2~2.4节中的植物组织样品进行生物化学胁迫指标分析。提取新鲜嫩枝的色素到5 mL的N,N-二甲基甲酰胺溶液中,用分光光度法测定叶绿素a(Chl-a)、叶绿素b(Chl-b)和类胡萝卜素,采用文献[14]中的方法和公式,计算色素含量。Chl-a、Chl-b和类胡萝卜素单位采用μg·g–1鲜重(FW)。在H2O2实验中,提取约100 mg新鲜植物嫩枝中的酶于冰冷的聚乙烯吡咯烷酮(PVP)磷酸盐缓冲液 50 mmol·L–1,pH 6.0)中。将提取物在4 ℃下以5000 gg=9.8 m·s–2)离心分离15 min,立即收集上清液并存储在–80 ℃下,直至进行化学分析。采用文献[15]修正的分光光度计方法测定内源H2O2浓度。将750 μL等分样品和2.5 mL 0.1%硫酸钛在20%(V/V)的H2SO4溶液中混合,并将混合物在20 ℃下以5000 g离心15 min。产生的黄色溶液在410 nm波长处采用分光光度计测定。H2O2浓度通过标准曲线估算,结果单位为μmol?g–1 FW。采用文献[16]修改后的分光光度计方法测定吲哚乙酸(IAA)的浓度。植物顶端尖端组织鲜样(约 100 mg)在2.5 mL蒸馏水中研磨,在20℃以 5000 g离心15 min,收集上清液。将萃取出的1.0 mL酶与2.0 mL改良后的萨尔科夫斯基试剂混合,形成粉色溶液,1 h后在530 nm波长处测定。IAA的浓度从标准曲线推算,单位采用μg.g–1 FW。3. 结果3.1. 实验室内结果湍流强度与植物叶和茎中的H2O2浓度的关系如图1所示。在物种特异性层面,两者具有极高的正相关性。与菹草、伊乐藻不同,苦草具有多叶结构,显示出比其他植被更高的H2O2浓度。菹草和伊乐藻也显示相似的趋势。相关关系显示,叶片中H2O2含量的波动比茎大,叶片中的H2O2浓度更高。Chl-a浓度、IAA含量和生长率与H2O2浓度的关系在图2(a)~(c)中分别显示,均显示为负相关关系,并且伸长率随H2O2浓度增加显著降低。尽管只有少量的H2O2存在于组织中,但伸长率的降低也十分显著。图3反映的是在培养基中增加H2O2浓度后穗花狐尾藻的响应。叶片中H2O2的浓度轻微降低到0.2 mmol?L–1 H2S,然后随着H2O2浓度的升高而增加。Chl-a和类胡萝卜素的浓度图(图4)表明Chl-a与叶片中H2O2的负相关关系。类胡萝卜素对叶片中的H2O2的响应相对分散。穗图1. 苦草、菹草和伊乐藻的H2O2浓度随湍流强度变化关系。菹草和伊乐藻的数据为叶片和茎数据,苦草数据为叶片数据。(高达((

过氧化氢作为环境胁迫指标在植被管理中的应用 - 图文

T.Asaedaetal./Engineering4(2018)610–616615Fig.11.(a)Distribution(numberoftrees)oftwowoodyspecieswithelevationfromthenormalwaterlevelofHiiRiver;(b)distributionofH2O2contentoftwowoodyspecieswitheleva
推荐度:
点击下载文档文档为doc格式
9i7go315wq83uyx9681999g5n13tny00ut3
领取福利

微信扫码领取福利

微信扫码分享