高一数学答案
填空题:
1.?1? 2.0 3.?3 24.?52?3? 5. 6.?,?2? 5sin1?2?7.a-12???3????b 8.y?sin?2x?? 9.?k??,k???,k?Z
88?3?2??10.
?13,?3 11.6或?1 12.?
2?13.②③⑤ 14.[,) 二、解答题: 15.
1173????????x??x????? 44????2???????cos??x??sin??x??4??4?????????????cos2x?sin??2x??sin2??x??2sin??x?cos??x??2??4??4??4?
cos2x48?????2cos??x??2??55????4?cos??x??4?
16.(1)AP?22?a2?1AM???b??a?b 33?23?3(2)BD?a?b,DP?AP?AD?11a?b, 33 则BD?3DP,故B,P,D三点共线。 (3)a?b?53,a?b?5
17.(1)设 OC??x,y?,由题意,有???3x?4y?0解得OC???8,?6?
?2x?6?y?421??(2)OD??1?3?,2?4??,则OD?25?2?10??5?25?????4
5??21?当???时,OD最小为2
5(3)当???1?86?时,OD??,?,设OA,OD的夹角为?, 5?55?812?OAOD55?2,则sin??1,tan??1 cos???255OAOD2?5
18.(1)
f(x)?31?cos2x33sin2x?3? 22233?3sin2x?cos2x 22????3sin?2x??
6???k????,0?,k?Z ?T??,对称中心是?212??(2)
0?x??2,??6?2x??6?7??3?,由图象值域为??,3?, 6?2??3?2??方程f(x)?a有两解,?a??,3? 19.(1)
f??x??a?xxa?a??f?x?,?奇函数, ??2a?1在定义域内单调递增(证明略); (2)由f?1?m??f1?m?2??0及f?x?是奇函数,有f?1?m??f?m2?1?,
??1?1?m?m2?1?1,解得1?m?2;
(3)由f?x?为增函数,则f?x??4也是增函数,
由x?2得f(x)?f(2),要使f(x)?4在???,2?上恒为负数,只需f(x)?4?0,解得2?3?a?2?3,又a?1,故a的取值范围为1?a?2?3 20.(1)
OA=?x?1,?1?,OB=?x-m,y??m?R?且OA?OB
?OA?OB?0,则?x?1??x?m??y?0
整理得y?x??m?1?x?m
2(2)
y?f(x)?x2??m?1?x?m??x?1??x?m?,
对任意?,有?1?cos??1,即1?x?3,?x?1?0 恒有f?x??0,即?x?1??x?m??0,则只要x?m?0,
?m?x,而xmax?3,?mmin?3
(3) 由向量加法的平行四边形法则,OQ为平行四边形的对角线,该平行四边形应是以OB和OA的反向延长线为两邻边,∴ ?的取值范围是???,0?; 当???1时,要使Q点落在指定区域内, 21即点Q应落在DE上,CD?OB,
23CE?OB,
213∴ ?的取值范围是(,).
22综上:??0,
121当???时,???
232
高一数学答案



