好文档 - 专业文书写作范文服务资料分享网站

2024-2024备战中考数学提高题专题复习平行四边形练习题附详细答案

天下 分享 时间: 加入收藏 我要投稿 点赞

∴△ABM≌△BCN, ∴∠BAM=∠CBN,

∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°, ∴∠APB=120°, ∵∠AKB=60°, ∴∠AKB+∠APB=180°, ∴A、K、B、P四点共圆, ∴∠BPH=∠KAB=60°, ∵PH=PB,

∴△PBH是等边三角形, ∴∠KBA=∠HBP,BH=BP, ∴∠KBH=∠ABP,∵BK=BA, ∴△KBH≌△ABP, ∴HK=AP,

∴PA+PB=KH+PH=PK,

∴PK的值最大时,△APB的周长最大,

∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4, ∴△PAB的周长最大值=2

+4.

11.(1)问题发现

如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由; (2)类比引申

如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF; (3)联想拓展

如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程。

【答案】(1)详见解析;(2)详见解析;(3)详见解析. 【解析】

试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFG≌△AFE,根据全等三角形的性质得出EF=FG,即可得出答案;

(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFE≌△AFG,

根据全等三角形的性质得出EF=FG,即可得出答案;

(3)把△ACE旋转到ABF的位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断. 试题解析:(1)理由是:如图1,

∵AB=AD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图1, ∵∠ADC=∠B=90°,

∴∠FDG=180°,点F. D. G共线, 则∠DAG=∠BAE,AE=AG,

∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°?45°=45°=∠EAF, 即∠EAF=∠FAG, 在△EAF和△GAF中, AF=AF,∠EAF=∠GAF,AE=AG, ∴△AFG≌△AFE(SAS), ∴EF=FG=BE+DF;

(2)∠B+∠D=180°时,EF=BE+DF; ∵AB=AD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2,

∴∠BAE=∠DAG, ∵∠BAD=90°,∠EAF=45°, ∴∠BAE+∠DAF=45°, ∴∠EAF=∠FAG, ∵∠ADC+∠B=180°,

∴∠FDG=180°,点F. D. G共线, 在△AFE和△AFG中, AE=AG,∠FAE=∠FAG,AF=AF, ∴△AFE≌△AFG(SAS),

∴EF=FG, 即:EF=BE+DF,

故答案为:∠B+∠ADC=180°; (3)BD2+CE2=DE2.

理由是:把△ACE旋转到ABF的位置,连接DF,

则∠FAB=∠CAE.

∵∠BAC=90°,∠DAE=45°, ∴∠BAD+∠CAE=45°, 又∵∠FAB=∠CAE, ∴∠FAD=∠DAE=45°, 则在△ADF和△ADE中, AD=AD,∠FAD=∠DAE,AF=AE, ∴△ADF≌△ADE, ∴DF=DE,∠C=∠ABF=45°, ∴∠BDF=90°, ∴△BDF是直角三角形, ∴BD2+BF2=DF2, ∴BD2+CE2=DE2.

12.已知边长为1的正方形ABCD中, P是对角线AC上的一个动点(与点A、C不重合),过点P作PE⊥PB ,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F. (1)当点E落在线段CD上时(如图), ①求证:PB=PE;

②在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;

(2)当点E落在线段DC的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);

(3)在点P的运动过程中,△PEC能否为等腰三角形?如果能,试求出AP的长,如果不能,试说明理由.

【答案】(1)①证明见解析;②点PP在运动过程中,PF的长度不变,值为画图见解析,成立 ;(3)能,1. 【解析】

2;(2)2分析:(1)①过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;②连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.

(2)根据条件即可画出符合要求的图形,同理可得(1)中的结论仍然成立. (3)可分点E在线段DC上和点E在线段DC的延长线上两种情况讨论,通过计算就可求出符合要求的AP的长.

详解:(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.

∵四边形ABCD是正方形,PG⊥BC,PH⊥DC, ∴∠GPC=∠ACB=∠ACD=∠HPC=45°. ∴PG=PH,∠GPH=∠PGB=∠PHE=90°. ∵PE⊥PB即∠BPE=90°, ∴∠BPG=90°﹣∠GPE=∠EPH. 在△PGB和△PHE中,

??PGB=?PHE?, ?PG=PH??BPG=?EPH?∴△PGB≌△PHE(ASA), ∴PB=PE.

②连接BD,如图2.

∵四边形ABCD是正方形,∴∠BOP=90°. ∵PE⊥PB即∠BPE=90°, ∴∠PBO=90°﹣∠BPO=∠EPF. ∵EF⊥PC即∠PFE=90°, ∴∠BOP=∠PFE. 在△BOP和△PFE中,

??PBO=?EPF???BOP=?PFE ?PB=PE?∴△BOP≌△PFE(AAS), ∴BO=PF.

∵四边形ABCD是正方形, ∴OB=OC,∠BOC=90°, ∴BC=2OB. ∵BC=1,∴OB=∴PF=

2, 22. 22. 2∴点PP在运动过程中,PF的长度不变,值为(2)当点E落在线段DC的延长线上时,符合要求的图形如图3所示.

同理可得:PB=PE,PF=2. 2(3)①若点E在线段DC上,如图1.

2024-2024备战中考数学提高题专题复习平行四边形练习题附详细答案

∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,
推荐度:
点击下载文档文档为doc格式
7j6co2vhc24g4gh0kzl91od1e2lms500xvc
领取福利

微信扫码领取福利

微信扫码分享