好文档 - 专业文书写作范文服务资料分享网站

2017年度河南地区中考数学试卷

天下 分享 时间: 加入收藏 我要投稿 点赞

_*

①直接用公式法; ②和差法; ③割补法.

(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.

23.翻折变换(折叠问题)

1、翻折变换(折叠问题)实质上就是轴对称变换.

2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.

首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.

24.旋转的性质 (1)旋转的性质:

①对应点到旋转中心的距离相等. ②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等. (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度. 注意:三要素中只要任意改变一个,图形就会不一样.

25.几何变换综合题 几何变换综合题.

26.解直角三角形的应用-方向角问题

(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.

_*

(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.

27.由三视图判断几何体

(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状. (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线; ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.

28.用样本估计总体

用样本估计总体是统计的基本思想. 1、用样本的频率分布估计总体分布:

从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.

2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).

一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.

29.频数(率)分布表

1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称

_*

为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表. 2、列频率分布表的步骤:

(1)计算极差,即计算最大值与最小值的差.

(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组). (3)将数据分组. (4)列频率分布表.

30.扇形统计图

(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.

(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.

(3)制作扇形图的步骤

①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;

④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.

31.中位数 (1)中位数:

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.

如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. (2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.

_*

(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势. 32.众数

(1)一组数据中出现次数最多的数据叫做众数.

(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.

(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..

33.列表法与树状图法

(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.

(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.

(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.

(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n. (5)当有两个元素时,可用树形图列举,也可以列表列举.

2017年度河南地区中考数学试卷

_*①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.23.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3
推荐度:
点击下载文档文档为doc格式
7gwba5sxsz2teb88j4i568ub00wtn200639
领取福利

微信扫码领取福利

微信扫码分享