好文档 - 专业文书写作范文服务资料分享网站

小学数学奥数基础教程(四年级)目30讲全

天下 分享 时间: 加入收藏 我要投稿 点赞

小学奥数基础教程(四年级)

例1把20以内的质数分别填入下图的邻的○内,7只能填在与8不相邻的○一个○中,使得图中用箭头连接起来内。其余数的填法见右上图。 的四个数之和都相等。

例4在右图的六个○内各填入一个质数(可取相同的质数),使它们的和

等于20,而且每个三角形(共5个)顶点上的数字之和都相等。

分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中

间两数之和必然相等。20以内共有2,3,5,7,11,13,17,19八个质数,分析与解:因为大三角形的三个顶点两两之和相等的有

与中间倒三角形的三个顶点正好是图 5+19=7+17=11+13, 中的六个○,又因为每个三角形顶点 于是得到下图的填法。

上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10。10

分为三个质数之和只能是2+3+5,由此得到右图的填法。

例2在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线

上的方格中的四个数字都是1,2,3,4。

例5在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k

不能被未标出的数整除。

分析与解:如左下图所示,受列及对 角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,??右下图为填好后的数阵分析与解:设未被标出的数为a,则被图。

标出的八个数之和为1+2+?+9-a=45-a。由于每个顶点都属于三个面,所以六个面的所有顶点数字之和为

6k=3×(45-a), 2k=45-a。

2k是偶数,45-a也应是偶数,

例3将1~8填入左下图的○内,要求所以a必为奇数。 按照自然数顺序相邻的两个数不能填 若a=1,则k=22; 入有直线连接的相邻的两个○内。

若a=3,则k=21; 若a=5,则k=20;

若a=7,则k=19; 若a=9,则k=18。

因为k不能被a整除,所以只有a

分析与解:因为中间的两个○各自只=7,k=19符合条件。

与一个○不相邻,而2~7中的任何一 由于每个面上四个顶点上的数字个数都与两个数相邻,所以这两个○之和等于19,所以与9在一个面上的内只能填1和8。2只能填在与1不相

另外三个顶点数之和应等于10。在1,

- 21 -

2,3,4,5,6,8中,三个数之和等

于10的有三组: 10=1+3+6 =1+4+5 =2+3+5,

将这三组数填入9所在的三个面上,可得右图的填法。

练习18

1.将1~6这六个数分别填入左下图中的六个○内,使得三条直线上的数字的和都相等。

2.将1~8这八个数分别填入右上图中的八个方格内,使上面四格、下面四格、左边四格、右边四格、中间四格及四角四格内四个数相加的和都是18。

3.在下页左上图的每个方格中填

入一个数字,使得每行、每列以及每条对角线上的方格中的四个数都是1,2,3,4。

4.将1~8填入右上图的八个空格中,使得横、竖、对角任何两个相邻空格中的数都不是相邻的两个自然数。

5.20以内共有10个奇数,去掉9和15还剩八个奇数。将这八个奇数填入右图的八个○中(其中3已填好),使得用箭头连接起来的四个数之和都相等。

小学奥数基础教程(四年级)

6.在左下图的七个○内各填入一个质数,使每个小三角形(共6个)的三个顶点数之和都相等,且为尽量小的质数。

到丙有3种方法,第3步丙到丁有2种方法。对于第一步的每种方法,第二步都有3种方法,所以从甲到丙有2×3=6(种)方法;对从甲到丙的每种方法,第三步都有2种方法,所以不

同的走法共有

- 22 -

4步给D染色,因为不能与A,C同色,故有3种不同的染色方法;第5步给E染色,由于不能与A,C,D同色,故只有2种不同的染色方法。根据乘法原理,共有不同的染色方法 5×4×3×3×2=360(种)。 7.从1~13中选出12个自然数填入右上图的空格中,使每横行四数之和相等,每竖列三数之和也相等。 19讲 乘法原理

让我们先看下面几个问题。 例1马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 分析与解:由下图可以看出,帽子和鞋共有6种搭配。

事实上,小丑戴帽穿鞋是分两步进行的。第一步戴帽子,有3种方法;第二步穿鞋,有2种方法。对第一步的每种方法,第二步都有两种方法,所以不同的搭配共有 3×2=6(种)。

例2从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法? 分析与解:用A1,A2表示从甲地到乙地的2条路,用B1,B2,B3表示从乙地到丙地的3条路,用C1,C2表示从丙地到丁地的2条路(见下页图)。

共有下面12种走法: A1B1C1 A1B2C1 A1B3C1 A1B1C2 A1B2C A1B3C2 A2B1C1 A2B2C1 A2B3C1 A2B1C2 A2B2C2 A2B3C2

事实上,从甲到丁是分三步走的。第一步甲到乙有2种方法,第二步乙

2×3×2=12(种)。

以上两例用到的数学思想就是数

学上的乘法原理。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法??做第n步有mn种方法,那么按照这样的步骤完成这件任务共有 N=m1×m2×?×mn 种不同的方法。

从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的。 例3用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?

分析与解:组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。根据乘法原理,可以组成三位数

5×6×6=180(个)。 例4如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?

分析与解:将染色这一过程分为依次

给A,B,C,D,E染色五步。 先给A染色,因为有5种颜色,故有5种不同的染色方法;第2步给B染色,因不能与A同色,还剩下4种颜色可选择,故有4种不同的染色方法;第3步给C染色,因为不能与A,B同色,故有3种不同的染色方法;第例5求360共有多少个不同的约数。 分析与解:先将360分解质因数, 360=2×2×2×3×3×5, 所以360的约数的质因数必然在2,3,5之中。为了确定360的所有不同的约数,我们分三步进行: 第1步确定约数中含有2的个数,可能是0,1,2,3个,即有4种可能; 第2步确定约数中含有3的个数,可能是0,1,2个,即有3种可能; 第3步确定约数中含有5的个数,可能没有,也可能有1个,即有2种可能。

根据乘法原理,360的不同约数共有

4×3×2=24(个)。

由例5得到:如果一个自然数N分解质因数后的形式为

其中P1,P2,?,Pl都是质数,n1,n2?,nl都是自然数,则N的所有约数的个数为:

(n1+1)×(n2+1)×?×(nl+1)。

利用上面的公式,可以很容易地算出某个自然数的所有约数的个数。例如,11088=24×32×7×11,11088共有不同的约数

(4+1)×(2+1)×(1+1)×(1+1)=60(个)。

例6有10块糖,每天至少吃一块,吃完为止。问:共有多少种不同的吃法? 分析与解:将10块糖排成一排,糖与糖之间共有9个空。从头开始,如果相邻两块糖是分在两天吃的,那么就在其间画一条线。下图表示10块糖分在五天吃:第一天吃2块,第二天吃3块,第三天吃1块,第四天吃2块,第五天吃2块。因为每个空都有加线与不加线两种可能,根据乘法原理,不同的加线方法共有29

=512(种)。

小学奥数基础教程(四年级)

因为每一种加线方法对应一种吃糖的方法,所以不同的吃法共有512种。

班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法? 分析与解:一天中乘坐火车有4种走同的染色方法?

- 23 -

域染不同的颜色。问:共有多少种不

练习19

1.有五顶不同的帽子,两件不同的上衣,三条不同的裤子。从中取出一顶帽子、一件上衣、一条裤子配成一套装束。问:有多少种不同的装束? 2.四角号码字典,用4个数码表示一个汉字。小王自编一个“密码本”,用3个数码(可取重复数字)表示一个汉字,例如,用“011”代表汉字“车”。问:小王的“密码本”上最多能表示多少个不同的汉字?

3.“IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”?

4.在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列。问:共有多少种不同的放法?

5.要从四年级六个班中评选出学习和体育先进集体各一个(不能同时评一个班),共有多少种不同的评选结果?

6.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法? 7.用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?

第20讲 加法原理(一)

例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2

法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。 例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号? 分析与解:根据挂信号旗的面数可以将信号分为两类。第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。所以一共可以表示出不同的信号 3+6=9(种)。

以上两例利用的数学思想就是加法原理。

加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法 ??在第n类方法中有mn种不同方法,那么完成这件任务共有

N=m1+m2+?+mn 种不同的方法。

乘法原理和加法原理是两个重要

而常用的计数法则,在应用时一定要注意它们的区别。乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。

例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种? 分析与解:两次的数字之和是偶数可

以分为两类,即两数都是奇数,或者两数都是偶数。

因为骰子上有三个奇数,所以两

数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。 例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区

分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同。本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况。 当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选。根据乘法原理,此时不同的染色方法有

5×4×3×3=180(种)。 当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B有3种颜色可选;C有2种颜色可选;D有2种颜色可选。根据乘法原理,此时不同的染色方法有

5×4×3×2×2=240(种)。 再根据加法原理,不同的染色方法共有

180+240=420(种)。 例5用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个? 分析与解:将至少有连续三位数是1的五位数分成三类:连续五位是1、恰有连续四位是1、恰有连续三位是1。 连续五位是1,只有11111一种;

中任一个,所以有3+3=6(种);

小学奥数基础教程(四年级)

2.光明小学四、五、六年级共订- 24 -

级上去。根据加法原理,如果登上第

3×4+4×3+3×3=33(种)。 由加法原理,这样的五位数共有 1+6+33=40(种)。 在例5中,我们先将这种五位数分为三类,以后在某些类中又分了若干种情况,其中使用的都是加法原理。 例6右图中每个小方格的边长都是1。一只小虫从直线AB上的O点出发,沿着横线与竖线爬行,可上可下,可左可右,但最后仍要回到AB上(不一定回到O点)。如果小虫爬行的总长是3,那么小虫有多少条不同的爬行路线?

分析与解:如果小虫爬行的总长是2,那么小虫从AB上出发,回到AB上,其不同路线有6条(见左下图);小虫从与AB相邻的直线上出发,回到AB上,其不同路线有4条(见右下图)。

实际上,小虫爬行的总长是3。小虫爬行的第一步有四种情况: 向左,此时小虫还在AB上,由上面的分析,后两步有6条路线; 同理,向右也有6条路线; 向上,此时小虫在与AB相邻的直线上,由上面的分析,后两步有4条路线;

同理,向下也有4条路线。 根据加法原理,共有不同的爬行路线

6+6+4+4=20(条) 练习20

1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?

300份报纸,每个年级至少订99份报纸。问:共有多少种不同的订法? 3.将10颗相同的珠子分成三份,共有多少种不同的分法?

4.在所有的两位数中,两位数码之和是偶数的共有多少个? 5.用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同

的染色方法?

6.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个? 7.下图中每个小方格的边长都是

1。有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路

线有多少条?

第21讲 加法原理(二) 我们通常解题,总是要先列出算式,然后求解。可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。这一讲我们介绍利用加法原理在“图上作业”的解题方法。 例1小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法? 分析与解:登上第1级台阶只有1种登法。登上第2级台阶可由第1级台阶上去,或者从平地跨2级上去,故有2种登法。登上第3级台阶可从第1级台阶跨2级上去,或者从第2级台阶上去,所以登上第3级台阶的方法数是登上第1级台阶的方法数与登上第2级台阶的方法数之和,共有1+2=3(种)??一般地,登上第n级台阶,或者从第(n—1)级台阶跨一级上去,或者从第(n—2)级台阶跨两(n—1)级和第(n—2)级分别有a种和b种方法,则登上第n级有(a+b)种方法。因此只要知道登上第1级和第2级台阶各有几种方法,就可以依次推算出登上以后各级的方法数。由登上第1级有1种方法,登上第2级有2种方法,可得出下面一串数: 1,2,3,5,8,13,21,34,55,89。

其中从第三个数起,每个数都是它前面两个数之和。登上第10级台阶的方法数对应这串数的第10个,即89。也可以在图上直接写出计算得出的登上各级台阶的方法数(见下图)。

例2在左下图中,从A点沿实线走最短路径到B点,共有多少条不同路线?

分析与解:题目要求从左下向右上走,所以走到任一点,例如右上图中的D点,不是经过左边的E点,就是经过下边的F点。如果到E点有a种走法(此处a=6),到F点有b种走法(此处b=4),根据加法原理,到D点就有(a+b)种走法(此处为6+4=10)。我们可以从左下角A点开始,按加法原理,依次向上、向右填上到各点的走法数(见右上图),最后得到共有35条不同路线。

例3左下图是某街区的道路图。从A点沿最短路线到B点,其中经过C点和D点的不同路线共有多少条?

分析与解:本题可以同例2一样从A标到B,也可以将从A到B分为三段,先是从A到C,再从C到D,最后从D到B。如右上图所示,从A到C有3种走法,从C到D有4种走法,从D到B有6种走法。因为从A到B是分几步走的,所以应该用乘法原理,不同的路线共有

3×4×6=72(条)。

例4沿左下图中箭头所指的方向从A到B共有多少种不同的走法?

分析与解:如右上图所示,先标出到C点的走法数,再标出到D点和E点的走法数,然后标出到F点的走法数,最后标出到B点的走法数。共有8种不同的走法。

例5有15根火柴,如果规定每次取2根或3根,那么取完这堆火柴共有多少种不同取法?

分析与解:为了便于理解,可以将本题转变为“上15级台阶,每次上2级或3级,共有多少种上法?”所以本题的解题方法与例1类似(见下表)。

注意,因为每次取2或3根,所以取1根的方法数是0,取2根和取3根的方法数都是1。取4根的方法数是取1根与取2根的方法数之和,即0+1=1。依此类推,取n根火柴的方法数是取(n-3)根与取(n-2)根的方法数之和。所以,这串数(取法数)中,从第4个数起,每个数都是它前面第3个数与前面第2个数之和。取完15根火柴共有28种不同取法。 练习21

1.小明要登15级台阶,每步登1级或2级台阶,共有多少种不同登法?

小学奥数基础教程(四年级)

2.小明要登20级台阶,每步登2级或3级台阶,共有多少种不同登法? 3.有一堆火柴共10根,每次取走1~3根,把这堆火柴全部取完有多少种不同取法,

4.在下图中,从A点沿最短路径到B点,共有多少条不同的路线?

5.左下图是某街区的道路图,C点和D点正在修路不能通过,那么从A点到B点的最短路线有多少条?

6.右上图是八间房子的示意图,相邻两间房子都有门相通。从A点穿过房间到达B处,如果只能从小号码房间走向大号码房间,那么共有多少种不同的走法?

第22讲 还原问题(一)

有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。”这位老人有多少岁呢?解这个题目要从所叙述的最后结果出发,利用已给条件一步步倒着推算,同学们不难看出,这位老人的年龄是

(100÷10+15)×4—12=88(岁)。

从这一例子可以看出,对于有些问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。

例1有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。问:这个数是几? 分析:这个问题是由

- 25 -

(□×4—46)÷3—10=4, 求出□。我们倒着看,如果除以3以后不减去10,那么商应该是4+10=14;如果在减去46以后不除以3,那么差该是14×3=42;可知这个数乘以4后的积为42+46=88,因此这个数是88÷4=22。

解:[(4+10)×3+46]÷4=22。 答:这个数是22。

例2小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。问:正确的结果应是多少? 分析:利用还原法。因为把个位上的5看成9,所以多加了4;又因为把十位上的8看成3,所以少加了50。

在用还原法做题时,多加了的4应减去,多减了的50应加上。 解:123-4+50=169。 答:正确的结果应是169。 例3学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。问:最初乐乐拿了多少棵树苗? 分析:先求乐乐与欢欢现在各拿了多少棵树苗。学校共有树苗36棵,乐乐拿的树苗数是欢欢的2倍,所以欢欢现在拿了36÷(2+1)=12(棵)树苗,而乐乐现在拿了12×2=24(棵)树苗,乐乐从欢欢那里抢走了6棵后是24棵,如果不抢,那么乐乐有树苗24-6=18(棵),欢欢看乐乐拿得太多,去抢了10棵,如果欢欢不抢,那么乐乐就有18+10=28(棵)。 解:36÷5(1+2)×2-6+10=28(棵)。 答:乐乐最初拿了28棵树苗。 例4甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三个组拥有相等数目的图书。问:甲、乙、丙三个组原来各有多少本图书?

分析与解:尽管甲、乙、丙三个组之间将图书借来借去,但图书的总数90本没有变,由最后三个组拥有相同数目的图书知道,每个组都有图书90÷3

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)例1把20以内的质数分别填入下图的邻的○内,7只能填在与8不相邻的○一个○中,使得图中用箭头连接起来内。其余数的填法见右上图。的四个数之和都相等。例4在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等。分析与解:由上图看出
推荐度:
点击下载文档文档为doc格式
6uaka1m06r9gaib4884o
领取福利

微信扫码领取福利

微信扫码分享