资料范本
本资料为word版本,可以直接编辑和打印,感谢您的下载
基于matlab对图像进行高通、
低通、带通滤波
地点:__________________ 时间:__________________
说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容
数字图像处理三级项目
—高通、低通、带通滤波器 摘要
在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。低通滤波器有巴特沃斯滤波器和高斯滤波器等等,本次设计使用的低通滤波器为****。高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器等等,本次设计使用巴特沃斯高通滤波器。
频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。
实验原理分析
根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像与空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。
在频域空间,图像的信息表现为不同频率分量的组合。如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。
频域空间的增强方法的步骤:
(1)将图像从图像空间转换到频域空间; (2)在频域空间对图像进行增强;
(3)将增强后的图像再从频域空间转换到图像空间。
低通滤波是要保留图像中的低频分量而除去高频分量。图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。理想低通滤波器具有传递函数:
其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。 功率谱比的定义:
其中,为滤波前图像的功率谱,为滤波后图像的功率谱。 频率计算公式为:,。
= 1 \\* GB3 ① Butterworth滤波器设计:
理想低通滤波器在数学上定义得很清楚,在计算机模拟中也可实现,但在截断频率处直上直下的理想低通滤波器是不能用实际的电子器件实现的。
n阶Butterworth低通滤波器(BLPF)的传递函数(截止频率距原点的距离为 )定义如下:
(1)
其中,。 (2)
不同于ILPF,BLPF变换函数在通带与被滤除的频率之间没有明显的截断。对于有平滑传递函数的滤波器,定义一个截止频率的位置并使H(u,v)幅度降到其最大值的一部分。在式(1)中,当D(u,v)=D0时,H(u,v)=0.5(从最大值降到它的50%)。
一阶的巴特沃斯滤波器没有振铃,在二阶中振铃通常很微小,这是因为与理想低通滤波器相比,它的通带与阻带之间没有明显的跳跃,在高低频率间的过渡比较光滑。巴特沃斯低通滤波器的处理结果比理想滤波器的要好,但阶数增高时振铃便成为一个重要因素。本次实验中设计实现了二阶巴特沃斯滤波器。
根据以上原理设计Butterworth低通滤波器,其处理结果如下图示: 理想低通滤波器有明显的振铃现象,而巴特沃斯滤波器的效果较好。 计算得test1的功率谱比L=0.9939。test2的功率谱比为0.9902。 = 2 \\* GB3 ② Gaussian滤波器设计:
基于matlab对图像进行高通、低通、带通滤波



