ºÃÎĵµ - רҵÎÄÊéд×÷·¶ÎÄ·þÎñ×ÊÁÏ·ÖÏíÍøÕ¾

Ò»Ôª¶þ´Î·½³Ì¾­µäÁ·Ï°Ìâ(6Ì×)¸½´øÏêϸ´ð°¸

ÓÉ ÌìÏ ·ÖÏí ʱ¼ä£º ¼ÓÈëÊÕ²Ø ÎÒҪͶ¸å µãÔÞ

(2)ÏÈÕûÀíºóÓù«Ê½·¨

x1??7?43?7?43£¬x2?33£»

(3)ÏÈÕûÀíºóÓù«Ê½·¨x1?2?7£¬x2?2?7£» (4)ÓÃÖ±½Ó¿ªÆ½·½·¨

x1?33?1?33?1£¬x2?44£®

122£®x£½1»ò2£®

23£®a£½£­6£¬b£½8£®

2(x?1)(x?3)?k?3£¬ÕûÀíµÃx2?2x?k2?0£® 24£®½â£º

222¡ß??2?4k?4?4k?0£¬

¡à²»ÂÛkΪÈκÎʵÊý£¬·½³ÌÒ»¶¨ÓÐÁ½¸ö²»ÏàµÈʵÊý¸ù£®

25£®

S??32£¬ÇÒS¡Ù£­3£®

26£®m£½4£®

227£®½â£ºÉèÔö³¤µÄ°Ù·ÖÂÊΪx£¬Ôò100?(1?10%)(1?x)?129.6£®

x1?0.2£¬x2??2.2(²»ºÏÌâÒâÉáÈ¥)£®

¡àÔö³¤µÄ°Ù·ÖÂÊΪ20%£®

???x1?x2?m?5?2?x1?x2??3m??x1?3?x428£®½â£ºÌáʾ£º½â?2£¬

½âµÃm£½10£¬»ò

m?103£®

Á·Ï°ËÄ

¡ô»ù´¡ÖªÊ¶×÷Òµ

1.ÀûÓÃÇó¸ù¹«Ê½½âÒ»Ôª¶þ´Î·½³Ìʱ£¬Ê×ÏÈÒª°Ñ·½³Ì»¯Îª____________£¬È·¶¨__________µÄÖµ£¬µ±__________ʱ£¬°Ña,b,cµÄÖµ´úÈ빫ʽ£¬x1£¬2=_________________ÇóµÃ·½³ÌµÄ½â.

2¡¢°Ñ·½³Ì4 ¡ªx2 = 3x»¯Îªax2 + bx + c = 0(a¡Ù0)ÐÎʽΪ £¬Ôò¸Ã·½³ÌµÄ¶þ´ÎÏîϵÊý¡¢Ò»´ÎÏîϵÊýºÍ³£ÊýÏî·Ö±ðΪ ¡£

3.·½³Ì3x2£­8=7x»¯ÎªÒ»°ãÐÎʽÊÇ________£¬a=__________,b=__________,c=_________,·½³ÌµÄ¸ùx1=_____,x2=______.

4¡¢ÒÑÖªy=x2-2x-3£¬µ±x= ʱ£¬yµÄÖµÊÇ-3¡£

5.°Ñ·½³Ì£¨x-5£©(x+5£©+(2x-1)2=0»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄÒ»°ãÐÎʽÊÇ( ) A.5x2-4x-4=0 B.x2-5=0 C.5x2-2x+1=0 D.5x2-4x+6=0 6.Óù«Ê½·¨½â·½³Ì3x2+4=12x£¬ÏÂÁдúÈ빫ʽÕýÈ·µÄÊÇ£¨ £©

12?122?3?4?12?122?3?4A.x1¡¢2= B.x1¡¢2=

22?(?12)??(?12)2?4?3?412?122?3?4C.x1¡¢2= D.x1¡¢2=

22?327£®·½³Ìx?x?1µÄ¸ùÊÇ£¨ £©

A£®x?x?1 B£® x?1?5?1?5 C£®x??x?1 D£®x? 228.·½³Ìx2+(3?2)x+6=0µÄ½âÊÇ£¨ £©

A.x1=1,x2=6 B.x1=£­1,x2=£­6 C.x1=2,x2=3 D.x1=£­2,x2=£­3 9.ÏÂÁи÷ÊýÖУ¬ÊÇ·½³Ìx2£­(1+5)x+5=0µÄ½âµÄÓУ¨ £©

¢Ù1+5 ¢Ú1£­5 ¢Û1 ¢Ü£­5 A.0¸ö B.1¸ö 10. ÔËÓù«Ê½·¨½âÏÂÁз½³Ì:

(1)5x2+2x£­1=0 (2)x2+6x+9=7

C.2¸ö

D.3¸ö

¡ôÄÜÁ¦·½·¨×÷Òµ

11£®·½³Ìx2?4x?3?0µÄ¸ùÊÇ 12£®·½³Ìax2?bx?0(a?0)µÄ¸ùÊÇ

13.2x2£­2x£­5=0µÄ¶þ¸ùΪx1=_________£¬x2=_________. 14.¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+bx+c=0ÓÐʵÊý½âµÄÌõ¼þÊÇ__________.

15.Èç¹û¹ØÓÚxµÄ·½³Ì4mx2-mx+1=0ÓÐÁ½¸öÏàµÈʵÊý¸ù,ÄÇôËüµÄ¸ùÊÇ_______. 16£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©

A£®Ò»Ôª¶þ´Î·½³ÌµÄÒ»°ãÐÎʽÊÇax2?bx?c?0

?b?b2?4acB£®Ò»Ôª¶þ´Î·½³Ìax?bx?c?0µÄ¸ùÊÇx?

2a2C£®·½³Ìx2?xµÄ½âÊÇx£½1 D£®·½³Ìx(x?3)(x?2)?0µÄ¸ùÓÐÈý¸ö

4217£®·½³Ìx?5x?6?0µÄ¸ùÊÇ£¨ £©

A£®6£¬1 B£®2£¬3 C£®?2,?3 D£®?6,?1 18.²»½â·½³ÌÅжÏÏÂÁз½³ÌÖÐÎÞʵÊý¸ùµÄÊÇ( ) A.-x2=2x-1 B.4x2+4x+

5=0; C. 42x2?x?3?0 D.(x+2)(x-3)==-5

19¡¢ÒÑÖª£íÊÇ·½³Ì£ø2£­£ø£­£±£½£°µÄÒ»¸ö¸ù£¬Ôò´úÊý£í2£­£íµÄÖµµÈÓÚ £¨ £© A¡¢£±

B¡¢£­£±

C¡¢0

D¡¢2

20.Èô´úÊýʽx2+5x+6Ó룭x+1µÄÖµÏàµÈ£¬ÔòxµÄֵΪ£¨ £© A.x1=£­1£¬x2=£­5 C.x1=£­2£¬x2=£­3

B.x1=£­6£¬x2=1 D.x=£­1

21.½âÏÂÁйØÓÚxµÄ·½³Ì:

(1)x2+2x£­2=0 (2).3x2+4x£­7=0

(3)(x+3)(x£­1)=5 £¨4)(x£­2)2+42x=0

22.½â¹ØÓÚxµÄ·½³Ìx2?2ax?b2?a2

23£®Èô·½³Ì£¨m£­2£©xm2

£­5m+8

+(m+3)x+5=0ÊÇÒ»Ôª¶þ´Î·½³Ì£¬ÇómµÄÖµ

24.ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx-2kx+Êý¸ù.

¡ôÄÜÁ¦ÍØÕ¹Óë̽¾¿

25£®ÏÂÁз½³ÌÖÐÓÐʵÊý¸ùµÄÊÇ( )

2

12

k-2=0. ÇóÖ¤:²»ÂÛkΪºÎÖµ,·½³Ì×ÜÓÐÁ½²»ÏàµÈʵ2(A)x2£«2x£«3=0£® (B)x2£«1=0£® (C)x2£«3x£«1=0£® (D)

x1£® ?x?1x?126£®ÒÑÖªm£¬nÊǹØÓÚxµÄ·½³Ì£¨k£«1£©x2-x+1=0µÄÁ½¸öʵÊý¸ù£¬ÇÒÂú×ãk+1=(m+1)(n+1)£¬ÔòʵÊýkµÄÖµÊÇ £®

27. ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì(m?2)2x2?(2m?1)x?1?0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨ £©

33 B. m? 4433C. m?ÇÒm?2 D. m?ÇÒm?2

44A. m?

´ð°¸

?b?b2?4ac1.Ò»°ãÐÎʽ ¶þ´ÎÏîϵÊý¡¢Ò»´ÎÏîϵÊý¡¢³£ÊýÏî b£­4ac¡Ý0

2a2

2¡¢x2 + 3x ¡ª4=0£¬ 1¡¢3¡¢¡ª4£» 3.3x2£­7x£­8=0 3 £­7 £­8 4¡¢0¡¢2

Ò»Ôª¶þ´Î·½³Ì¾­µäÁ·Ï°Ìâ(6Ì×)¸½´øÏêϸ´ð°¸

(2)ÏÈÕûÀíºóÓù«Ê½·¨x1??7?43?7?43£¬x2?33£»(3)ÏÈÕûÀíºóÓù«Ê½·¨x1?2?7£¬x2?2?7£»(4)ÓÃÖ±½Ó¿ªÆ½·½·¨x1?33?1?33?1£¬x2?44£®122£®x£½1»ò2£®23£®a£½£­6£¬b£½8£®2(x?1)(x?3)?k?3£¬ÕûÀíµÃx2?2x?k2?0£®24£®½â£º
ÍÆ¼ö¶È£º
µã»÷ÏÂÔØÎĵµÎĵµÎªdoc¸ñʽ
63neg5j9bj3pebe0ile7
ÁìÈ¡¸£Àû

΢ÐÅɨÂëÁìÈ¡¸£Àû

΢ÐÅɨÂë·ÖÏí