(2)ÏÈÕûÀíºóÓù«Ê½·¨
x1??7?43?7?43£¬x2?33£»
(3)ÏÈÕûÀíºóÓù«Ê½·¨x1?2?7£¬x2?2?7£» (4)ÓÃÖ±½Ó¿ªÆ½·½·¨
x1?33?1?33?1£¬x2?44£®
122£®x£½1»ò2£®
23£®a£½£6£¬b£½8£®
2(x?1)(x?3)?k?3£¬ÕûÀíµÃx2?2x?k2?0£® 24£®½â£º
222¡ß??2?4k?4?4k?0£¬
¡à²»ÂÛkΪÈκÎʵÊý£¬·½³ÌÒ»¶¨ÓÐÁ½¸ö²»ÏàµÈʵÊý¸ù£®
25£®
S??32£¬ÇÒS¡Ù£3£®
26£®m£½4£®
227£®½â£ºÉèÔö³¤µÄ°Ù·ÖÂÊΪx£¬Ôò100?(1?10%)(1?x)?129.6£®
x1?0.2£¬x2??2.2(²»ºÏÌâÒâÉáÈ¥)£®
¡àÔö³¤µÄ°Ù·ÖÂÊΪ20%£®
???x1?x2?m?5?2?x1?x2??3m??x1?3?x428£®½â£ºÌáʾ£º½â?2£¬
½âµÃm£½10£¬»ò
m?103£®
Á·Ï°ËÄ
¡ô»ù´¡ÖªÊ¶×÷Òµ
1.ÀûÓÃÇó¸ù¹«Ê½½âÒ»Ôª¶þ´Î·½³Ìʱ£¬Ê×ÏÈÒª°Ñ·½³Ì»¯Îª____________£¬È·¶¨__________µÄÖµ£¬µ±__________ʱ£¬°Ña,b,cµÄÖµ´úÈ빫ʽ£¬x1£¬2=_________________ÇóµÃ·½³ÌµÄ½â.
2¡¢°Ñ·½³Ì4 ¡ªx2 = 3x»¯Îªax2 + bx + c = 0(a¡Ù0)ÐÎʽΪ £¬Ôò¸Ã·½³ÌµÄ¶þ´ÎÏîϵÊý¡¢Ò»´ÎÏîϵÊýºÍ³£ÊýÏî·Ö±ðΪ ¡£
3.·½³Ì3x2£8=7x»¯ÎªÒ»°ãÐÎʽÊÇ________£¬a=__________,b=__________,c=_________,·½³ÌµÄ¸ùx1=_____,x2=______.
4¡¢ÒÑÖªy=x2-2x-3£¬µ±x= ʱ£¬yµÄÖµÊÇ-3¡£
5.°Ñ·½³Ì£¨x-5£©(x+5£©+(2x-1)2=0»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄÒ»°ãÐÎʽÊÇ( ) A.5x2-4x-4=0 B.x2-5=0 C.5x2-2x+1=0 D.5x2-4x+6=0 6.Óù«Ê½·¨½â·½³Ì3x2+4=12x£¬ÏÂÁдúÈ빫ʽÕýÈ·µÄÊÇ£¨ £©
12?122?3?4?12?122?3?4A.x1¡¢2= B.x1¡¢2=
22?(?12)??(?12)2?4?3?412?122?3?4C.x1¡¢2= D.x1¡¢2=
22?327£®·½³Ìx?x?1µÄ¸ùÊÇ£¨ £©
A£®x?x?1 B£® x?1?5?1?5 C£®x??x?1 D£®x? 228.·½³Ìx2+(3?2)x+6=0µÄ½âÊÇ£¨ £©
A.x1=1,x2=6 B.x1=£1,x2=£6 C.x1=2,x2=3 D.x1=£2,x2=£3 9.ÏÂÁи÷ÊýÖУ¬ÊÇ·½³Ìx2£(1+5)x+5=0µÄ½âµÄÓУ¨ £©
¢Ù1+5 ¢Ú1£5 ¢Û1 ¢Ü£5 A.0¸ö B.1¸ö 10. ÔËÓù«Ê½·¨½âÏÂÁз½³Ì:
(1)5x2+2x£1=0 (2)x2+6x+9=7
C.2¸ö
D.3¸ö
¡ôÄÜÁ¦·½·¨×÷Òµ
11£®·½³Ìx2?4x?3?0µÄ¸ùÊÇ 12£®·½³Ìax2?bx?0(a?0)µÄ¸ùÊÇ
13.2x2£2x£5=0µÄ¶þ¸ùΪx1=_________£¬x2=_________. 14.¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+bx+c=0ÓÐʵÊý½âµÄÌõ¼þÊÇ__________.
15.Èç¹û¹ØÓÚxµÄ·½³Ì4mx2-mx+1=0ÓÐÁ½¸öÏàµÈʵÊý¸ù,ÄÇôËüµÄ¸ùÊÇ_______. 16£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©
A£®Ò»Ôª¶þ´Î·½³ÌµÄÒ»°ãÐÎʽÊÇax2?bx?c?0
?b?b2?4acB£®Ò»Ôª¶þ´Î·½³Ìax?bx?c?0µÄ¸ùÊÇx?
2a2C£®·½³Ìx2?xµÄ½âÊÇx£½1 D£®·½³Ìx(x?3)(x?2)?0µÄ¸ùÓÐÈý¸ö
4217£®·½³Ìx?5x?6?0µÄ¸ùÊÇ£¨ £©
A£®6£¬1 B£®2£¬3 C£®?2,?3 D£®?6,?1 18.²»½â·½³ÌÅжÏÏÂÁз½³ÌÖÐÎÞʵÊý¸ùµÄÊÇ( ) A.-x2=2x-1 B.4x2+4x+
5=0; C. 42x2?x?3?0 D.(x+2)(x-3)==-5
19¡¢ÒÑÖª£íÊÇ·½³Ì£ø2££ø££±£½£°µÄÒ»¸ö¸ù£¬Ôò´úÊý£í2££íµÄÖµµÈÓÚ £¨ £© A¡¢£±
B¡¢££±
C¡¢0
D¡¢2
20.Èô´úÊýʽx2+5x+6Óë£x+1µÄÖµÏàµÈ£¬ÔòxµÄֵΪ£¨ £© A.x1=£1£¬x2=£5 C.x1=£2£¬x2=£3
B.x1=£6£¬x2=1 D.x=£1
21.½âÏÂÁйØÓÚxµÄ·½³Ì:
(1)x2+2x£2=0 (2).3x2+4x£7=0
(3)(x+3)(x£1)=5 £¨4)(x£2)2+42x=0
22.½â¹ØÓÚxµÄ·½³Ìx2?2ax?b2?a2
23£®Èô·½³Ì£¨m£2£©xm2
£5m+8
+(m+3)x+5=0ÊÇÒ»Ôª¶þ´Î·½³Ì£¬ÇómµÄÖµ
24.ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx-2kx+Êý¸ù.
¡ôÄÜÁ¦ÍØÕ¹Óë̽¾¿
25£®ÏÂÁз½³ÌÖÐÓÐʵÊý¸ùµÄÊÇ( )
2
12
k-2=0. ÇóÖ¤:²»ÂÛkΪºÎÖµ,·½³Ì×ÜÓÐÁ½²»ÏàµÈʵ2(A)x2£«2x£«3=0£® (B)x2£«1=0£® (C)x2£«3x£«1=0£® (D)
x1£® ?x?1x?126£®ÒÑÖªm£¬nÊǹØÓÚxµÄ·½³Ì£¨k£«1£©x2-x+1=0µÄÁ½¸öʵÊý¸ù£¬ÇÒÂú×ãk+1=(m+1)(n+1)£¬ÔòʵÊýkµÄÖµÊÇ £®
27. ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì(m?2)2x2?(2m?1)x?1?0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨ £©
33 B. m? 4433C. m?ÇÒm?2 D. m?ÇÒm?2
44A. m?
´ð°¸
?b?b2?4ac1.Ò»°ãÐÎʽ ¶þ´ÎÏîϵÊý¡¢Ò»´ÎÏîϵÊý¡¢³£ÊýÏî b£4ac¡Ý0
2a2
2¡¢x2 + 3x ¡ª4=0£¬ 1¡¢3¡¢¡ª4£» 3.3x2£7x£8=0 3 £7 £8 4¡¢0¡¢2
Ò»Ôª¶þ´Î·½³Ì¾µäÁ·Ï°Ìâ(6Ì×)¸½´øÏêϸ´ð°¸



