A B D C
证明:延长AB取点E,使AE=AC,连接DE ∵AD平分∠BAC ∴∠EAD=∠CAD ∵AE=AC,AD=AD ∴△AED≌△ACD (SAS) ∴∠E=∠C ∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE ∴BD=BE ∴∠BDE=∠E ∵∠ABC=∠E+∠BDE ∴∠ABC=2∠E ∴∠ABC=2∠C
11. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
在AE上取F,使EF=EB,连接CF ∵CE⊥AB
∴∠CEB=∠CEF=90° ∵EB=EF,CE=CE, ∴△CEB≌△CEF ∴∠B=∠CFE
∵∠B+∠D=180°,∠CFE+∠CFA=180° ∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC 又∵AC=AC
∴△ADC≌△AFC(SAS) ∴AD=AF
∴AE=AF+FE=AD+BE
12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。
在BC上截取BF=AB,连接EF ∵BE平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE
∴⊿ABE≌⊿FBE(SAS) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCE CE平分∠BCD
CE=CE ∴⊿DCE≌⊿FCE(AAS) ∴CD=CF
∴BC=BF+CF=AB+CD
13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
E D C F A B
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE, ∴∠AED=∠ABD,
∴四边形ABDE是平行四边形。 ∴得:AE=BD, ∵AF=CD,EF=BC,
∴三角形AEF全等于三角形DBC, ∴∠F=∠C。
14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C
A D B C
证明:设线段AB,CD所在的直线交于E,(当AD
∴BE=CE (等量加等量,或等量减等量) ∴△BEC是等腰三角形 ∴∠B=∠C.
15. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB C A P B D 在AC上取点E, 使AE=AB。 ∵AE=AB AP=AP ∠EAP=∠BAE, ∴△EAP≌△BAP ∴PE=PB。
最新人教版八年级数学上册全等三角形证明经典50题及答案.docx



