26.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5), 当y=0时,x﹣5=0,解得x=5,则B(5,0), 把B(5,0),C(0,﹣5)代入y=ax2+6x+c得∴抛物线解析式为y=﹣x2+6x﹣5;
(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0), ∵B(5,0),C(0,﹣5), ∴△OCB为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM⊥BC,
∴△AMB为等腰直角三角形, ∴AM=
AB=
×4=2
,
,解得
,
∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ, ∴PQ=AM=2
,PQ⊥BC,
作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°, ∴PD=
PQ=
×2
=4,
设P(m,﹣m2+6m﹣5),则D(m,m﹣5), 当P点在直线BC上方时,
PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4, 当P点在直线BC下方时,
PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=综上所述,P点的横坐标为4或
或
;
,m2=
,
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2, ∵M1A=M1C, ∴∠ACM1=∠CAM1, ∴∠AM1B=2∠ACB, ∵△ANB为等腰直角三角形, ∴AH=BH=NH=2, ∴N(3,﹣2),
易得AC的解析式为y=5x﹣5,E点坐标为(,﹣), 设直线EM1的解析式为y=﹣x+b, 把E(,﹣)代入得﹣
+b=﹣,解得b=﹣
,
,
∴直线EM1的解析式为y=﹣x﹣
解方程组得
,则M1(,﹣);
在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,
设M2(x,x﹣5),
∵3=∴x=∴M2(
,
,
,﹣),
,﹣
)或(
,﹣).
综上所述,点M的坐标为(
2020年峨眉山市中考数学预测卷试题、答案



