.
%均值滤波
%方法一:filter2 clear all;
figure
I=rgb2gray(imread('132.jpg'));
I=imnoise(I,'salt & pepper',0.1); %加入椒盐噪声
K1=filter2(fspecial('average',3),I)/255; %进行3*3均值滤波 K2=filter2(fspecial('average',5),I)/255; %进行5*5均值滤波 K3=filter2(fspecial('average',7),I)/255; %进行7*7均值滤波 subplot(2,2,1),imshow(I),title('椒盐噪声图'); %显示原图像 subplot(2,2,2),imshow(K1),title('3*3均值滤波图像'); subplot(2,2,3),imshow(K2),title('5*5均值滤波图像'); subplot(2,2,4),imshow(K3),title('7*7均值滤波图像');
%方法二 双循环语句,移动平均法 %均值滤波 clc,clear; figure
f=rgb2gray(imread('132.jpg'));
subplot(2,2,1),imshow(f),title('原图'); f1=imnoise(f,'gaussian',0.002,0.0008);
subplot(2,2,2),imshow(f1),title('高斯噪声图'); k1=floor(3/2)+1; k2=floor(3/2)+1; X=f1;
[M,N]=size(X);
uint8 Y=zeros(M,N); funBox=zeros(3,3); for i=1:M-3
for j=1:N-3
funBox=X(i:i+3,j:j+3); s=sum(funBox(:));
精品
.
h=s/16;
Y(i+k1,j+k2)=h; end; end;
Y=Y/255;
subplot(2,2,3),imshow(Y),title('均值滤波图');
如有侵权请联系告知删除,感谢你们的配合!
精品
均值滤波matlab程序代码



