好文档 - 专业文书写作范文服务资料分享网站

《机械设计基础》教案

天下 分享 时间: 加入收藏 我要投稿 点赞

1)概述部分

本部分应了解摩擦学所包含的主要内容和研究对象,以及摩擦、磨损与润滑之间的有机联系。明确摩擦是因其能量损耗的主要原因,磨损是造成零件失效和材料损耗的主要原因,而润滑则是减小摩擦和磨损的最有效的手段。随着科学技术的发展,材料和能源的节约日益重要,,因此形成了一门新兴的学科—摩擦学。它是研究相对运动中相互作用者的表面工作情况的科学和技术。

2)讲授§4-1“摩擦”一节内容时应注意的问题

本节所讨论的摩擦,不是先修课程内容的简单重复,而是更着重于摩擦的机理和物理本质。学习时要注意了解各种摩擦的机理及其状态。

①干摩擦 关于干摩擦的理论,主要有机械啮合理论、分子机械理论、静电力理论的粘附理论。目前认为粘附理论对金属摩擦在宏观上提出了最满意地解释。

用粘附理论,结合试验结果,证明了经典摩擦定律的正确性,得出了干摩擦时的摩擦力与表观接触面积无关而与载荷成正比的结论[见教材第四章公式(4-2)及(4-3)]。

重点弄清以下概念:

a)简单粘附理论认为真实接触面积Ar取决于软金属的压缩屈服极限σSy和法向载荷Fn。但这一结论有一定的局限性。修正粘附理论认为真实接触面积是与金属材料的塑性变形决定的。这是考虑在有摩擦的情况下,由于接触区同时作用有法向应力及切应力,并假设当最大切应力达到临界值时,材料发生屈服。因此,真实接触面积Ar应该是考虑法向载荷的影响所得到的接触面积与摩擦力产生的面积增量之和。

b)简单粘附理论指出摩擦系数f=τB/σSy,其中τB、σSy皆指两金属中较软者的应力。对于大多数金属,比值τB/σSy均较接近,因而各种金属的摩擦系数相差很小。文献[12]对此的解释,认为是由于当两种硬金属发生摩擦时,其τB及σSy都较高而真实接触面积Ar却很小,当软金属对硬金属摩擦时,其τB及σSy都较低而Ar却较大的缘故。事实上,将按简单理论算得的摩擦系数绝对值与通过试验侧得的数值作一比较,,就可以证明它是不完全的。修正后的粘附理论是一种较符合实际的理论,虽然它仍以简单理论的模型为根据并作了若干假设,但它却能解释不少的摩擦现象。

②边界摩擦 首先应该了解边界摩擦的性质,即这种摩擦特性主要取决于润滑油和金属表面的化学性质,其特征就在于相对滑动的两金属表面上形成了边界膜。

进而应搞清楚物理吸附膜、化学吸附膜和化学反应膜形成的机理和特点。明确前两种边界膜的润滑性能称为润滑油的油性,后一种则叫极压性。

因为纯粹的边界摩擦只是在理想的光整表面间才能实现,而这种理想的光整表面实际上并不存在,因此不可能有纯粹的边界摩擦。实际上,我们所说的边界摩擦都是边界摩擦与干摩擦的混合。例如,当两摩擦表面间的间隙很小或机器起动机停车时,均会出现这种摩擦状态。

③混合摩擦 首先应了解产生混合摩擦的条件,明确混合摩擦是一种兼有干摩擦、边界摩擦和流体摩擦的平均性质的摩擦。例如,在滑动轴承中当轴颈滑动速度不足或润滑不足,而载荷过大时,便可产生这种混合摩擦(如内燃机的连杆销、十字滑快销和活塞销等);甚至正确设计和计算能达到流体摩擦的轴承在启动、停车及在磨合时间内也不可避免的会产生混合摩擦;此外,如在油中有硬质颗粒,,其尺寸超过了油膜厚度,也会发生混合摩擦。

如何评定混合摩擦时表面微观峰尖与油墨分担载荷的情况,教材中介绍了膜厚比公式(4-1),即λ=hmin/(Ra1+Ra2),它表示随着λ的增加,油膜所承担的载荷也增加。这是一个主要用于定性,且可粗略用来定量的公式,可供设计是确定摩擦状态的参考。

④流体摩擦 本小节中,对液体摩擦只作为一种摩擦状态来介绍,没有涉及一些理论分析问题,因而只需掌握两点:a)由于流体摩擦时摩擦面件的油膜厚度足够大(λ>5),油分子大都不受金属表面的吸附作用的支配而能自由移动,摩擦表现为油的粘性;b)形成流体摩擦是有一定条件的。

3)讲授§4-2“磨损”一节内容时应注意的问题

①首先应对机件磨损的普遍规律(及图4-6所表示的磨损曲线)有一个初步的认识,从而明确设计者的职责在于采取措施,力求缩短磨合期,延长稳定磨损期,推迟剧烈磨损期的到来。

②教材中所讨论的五种形式的磨损,主要根据J.T.Burwell提出的分类方法。对这五中磨损形式的机理,读者应有一个概括性的认识。其中,粘附磨损、磨粒

磨损和疲劳磨损是应掌握的重点。对腐蚀磨损、冲蚀磨损以及复合形式的磨损(即粘附、磨粒、疲劳和腐蚀磨损形式的复合)—微动磨损则只需有个基本概念即可。

顺便指出,这些磨损形式可随工作条件的变化而转化。对于通常的机械摩擦副,主要是随相对滑动速度和载荷的变化而变化。

③这几种磨损形式中的粘附磨损、磨粒磨损及疲劳磨损,在以后分析齿轮传动、蜗杆传动、滑动轴承和滚动轴承的失效形式时均会碰到,因而要善于把三种磨损形式的机理和有关基本概念与以后有关章节中所讲到的零件具体的联系起来,以便进一步深化概念。

4)讲授§4-3“润滑剂和润滑方法”一节时应注意的问题 ① 首先应对润滑的作用,润滑剂的种类有一个初步的了解

② 对于润滑油、润滑脂的主要质量指标这一小节中,重点是润滑油,对润滑脂只作一般了解即可。

润滑油的诸质量指标中,重点要了解粘度指标,明确润滑油是牛顿液体,油的粘度是流体润滑中极为重要的一个因素。对常用的粘度单位(动力粘度、运动粘度、条件粘度)的定义、量纲及不同粘度单位的相互换算方法应能掌握,并对润滑油的粘-温特性、粘-压特性有一个初步概念。

关于其它指标,只需建立一个印象,以便需要时查阅有关手册。

③ 润滑油、润滑脂的添加剂种类很多,主要了解添加剂的作用,特别是油性添加剂、极压添加剂对提高润滑油边界膜的强度所起的作用。

④ 润滑油或润滑脂的供应方法在设计中是很重要的,最好能结合生产实际掌握这一部分内容。

5)流体润滑原理这一节(§4-4)中,流体动力润滑时学习本门课程时需掌握的一个重要内容。学习流体动力润滑时,主要在于搞清两滑动表面间动压油膜的形成原理。对弹性流体动力润滑这一部分内容只要求建立一个初步的概念。这部分内容写的比较概括,为便于理解,这里作一些简单的补充说明。

弹性流体动力润滑理论是计入了高压下油的粘-压特性在流体动压油膜形成中所起的重要作用,以及引起接触区材料弹性变形的压力与流体动力润滑油膜压力的相互关系。例如,对于某些做相对滚动或滚动-滑动的两个受润零件,载荷的传递是通过零件的局部接触来实现的(如外啮合齿轮的轮齿之间,滚动轴承的滚

动体与套圈之间,凸轮与从动件之间等)。因为局部压力很高,这时接触区的局部弹性变形量与油膜厚度差不多具有同样的数量级,因而都不能予以忽略。在这种载荷条件下,接触体的局部弹性变形构成立了受润零件间的油膜形状,而这个油膜形成的流体动压力又起到使接触体产生弹性变形的作用,它们之间相互影响,互为因果,这就构成了弹性流体动力润滑理论的研究内容。

两个受润零件是否能形成弹性流体动力润滑,不仅要看局部受载的大小和形成流体动压油膜的所需的条件如何,而且还取决于接触体材料的弹性和油的粘-压特性。弹性流体动力润滑理论的研究目的是根据这种理论来求出高副接触处的最小油膜厚度。

根据对弹性流体动力润滑理论进行的大量计算结果,发现了如下的普遍规律: a)在靠近接触区口处突然出现第二峰值压力(见图4-18)。第二峰值压力不可忽视,因为它的数值很大而范围极窄,可能产生很高的表层下的应力,从而导致零件的点蚀破坏。

b)在出口处的油膜厚度出现一种缩颈现象,使得hmin比接触区平行部 的油膜厚度h0小25%,这可解释为,当油从高压接触区排出后就迅速扩散开,压力便急剧下降,此时要保持流动的连续性,通道截面(即油膜厚)即必须减小,因而形成了这一油膜局部收缩现象。

c)为了实现弹性流体动力润滑,必须计算其膜厚比是否能满足要求。 关于流体静力润滑只需了解其原理与流体动力润滑的本质区别即可。

三、本章教学工作的组织及学时分配

本章的教学内容安排2个学时。以多媒体手段结合挂图为主来共同完成该章的教学任务。

第五章 螺纹联接和螺旋传动

一、本章主要内容、特点、及教学要求

1.本章主要内容包括两部分:第一部分为螺栓联接的设计,包括螺栓联接的预紧、强度计算、螺栓组结构设计、受力分析及提高联接强度的措施;第二部分为滑动螺旋传动的设计计算方法。

2.本章特点是内容包括螺纹联接和螺旋传动两个部分。前者属于联接,后者

属于传动。二者在内容上虽有一定的联系,但在设计要求上却有很大的差别。 3.本章的教学要求

1)对于螺纹联接的基本知识(§5-1~§5-4),应了解螺纹及螺纹联接的类型、特性、标准、结构、应用场合及有关的防松方法等,以便在设计时能够正确的选用它们。

2)对于螺纹联接设计及强度计算部分(§5-5~§5-7),应掌握其结构设计原则及强度计算的理论与方法,能正确进行螺拴组的受力分析,能较为合理的设计出可靠的螺栓组联接。

3)对于螺旋传动部分,主要是掌握螺旋传动性能(效率、自锁等)对螺纹选型的要求及主要零件(螺杆、螺母)的设计计算方法,并通过一种基本类型—螺旋起重器的设计,了解滑动螺旋传动的主要设计过程。

二、本章重点、难点、及注意事项

1.本章重点有两个:其一是各类不同外载荷情况下,螺栓组中各螺栓的受力分析;其二是螺栓联接的强度计算,尤其是承受轴向拉伸载荷的紧螺栓联接的强度计算。

2.本章中较为复杂的问题是承受倾覆力矩的底板螺栓组联接的设计。实用中,常把这种螺栓组联接设计成倾覆力矩作用在结合面的垂直对称面内,并做出一些假设(如底板为绝对刚性体、地基与螺栓皆为均质弹性体等),使问题得到简化。 3.本章教学注意事项

1)§5-1~§5-4都是叙述性的内容,对做好螺栓联接的设计是必不可少的基本知识,应当引导学生阅读机械设计手册。

2)螺纹及螺纹联接件大都已标准化。设计时,对不太重要的螺纹联接一般只需根据不同情况进行选用,不许自行设计。对重要的螺纹联接,设计计算也只是确定螺栓危险截面的直径(螺纹小径),螺纹联接的其它部分尺寸由标准选定。但是,这并不排斥在个别特殊情况下,根据特殊的需要而自行设计某种非标准的螺纹联接件。

3)螺纹联接的设计主要是螺栓组联接的设计(因为工程实际中螺栓联接通常是成组使用的)。其设计工作包括两部分内容:第一部分内容是正确进行结构设计,通过受力分析找出受力最大的螺栓;第二部分内容是按照单个螺栓联接的强度计

《机械设计基础》教案

1)概述部分本部分应了解摩擦学所包含的主要内容和研究对象,以及摩擦、磨损与润滑之间的有机联系。明确摩擦是因其能量损耗的主要原因,磨损是造成零件失效和材料损耗的主要原因,而润滑则是减小摩擦和磨损的最有效的手段。随着科学技术的发展,材料和能源的节约日益重要,,因此形成了一门新兴的学科—摩擦学。它是研究相对运动中相互作用者的表面工作情况的科学和技术。2)讲授§4-1
推荐度:
点击下载文档文档为doc格式
3swr35vtwv00kc51ztty
领取福利

微信扫码领取福利

微信扫码分享