2019年潍坊市中考数学试卷(解析版)
一、选择题(本大题共12小题,每小题3分) 1.(3分)2019的倒数的相反数是( ) A.﹣2019
B.﹣
C.
D.2019
【分析】先求2019的倒数,再求倒数的相反数即可; 【解答】解:2019的倒数是故选:B.
【点评】本题考查倒数和相反数;熟练掌握倒数和相反数的求法是解题的关键. 2.(3分)下列运算正确的是( ) A.3a×2a=6a B.a8÷a4=a2
C.﹣3(a﹣1)=3﹣3a D.(a3)2=a9
,再求
的相反数为﹣
;
【分析】根据单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质,对各选项分析判断后利用排除法求解.
【解答】解:A、3a×2a=6a2,故本选项错误; B、a8÷a4=a4,故本选项错误; C、﹣3(a﹣1)=3﹣3a,正确; D、(a3)2=a6,故本选项错误. 故选:C.
【点评】本题考查了单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质.熟练掌握法则是解题的关键.
3.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( ) A.10.02亿 【解答】解:
1.002×1011=1 002 000 000 00=1002亿 故选:C.
【点评】本题主要考查科学记数法的展开,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)
4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )
B.100.2亿
C.1002亿
D.10020亿
【分析】利用科学记数法的表示形式展开即可
A.俯视图不变,左视图不变
B.主视图改变,左视图改变
C.俯视图不变,主视图不变 D.主视图改变,俯视图改变
【分析】利用结合体的形状,结合三视图可得出俯视图和左视图没有发生变化; 【解答】解:将正方体①移走后,
1
新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变; 故选:A.
【点评】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键. 5.(3分)利用教材中时计算器依次按键下:
则计算器显示的结果与下列各数中最接近的一个是( ) A.2.5 【解答】解:∵∴与故选:B.
【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序. 6.(3分)下列因式分解正确的是( ) A.3ax2﹣6ax=3(ax2﹣2ax) C.a2+2ab﹣4b2=(a+2b)2
B.x2+y2=(﹣x+y)(﹣x﹣y) D.﹣ax2+2ax﹣a=﹣a(x﹣1)2
B.2.6 ≈2.646,
C.2.8
D.2.9
【分析】利用计算器得到
最接近的是2.6,
的近似值即可作出判断.
【分析】直接利用提取公因式法以及公式法分解因式进而判断即可. 【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误; B、x2+y2,无法分解因式,故此选项错误; C、a2+2ab﹣4b2,无法分解因式,故此选项错误; D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确. 故选:D.
【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 7.(3分)小莹同学10个周综合素质评价成绩统计如下:
成绩(分) 周数(个)
94 1
95 2
97 2
98 4
100 1
这10个周的综合素质评价成绩的中位数和方差分别是( ) A.97.5 2.8 B.97.5 3
C.97 2.8 D.97 3
=97.5(分),
【分析】根据中位数和方差的定义计算可得.
【解答】解:这10个周的综合素质评价成绩的中位数是平均成绩为
×(94+95×2+97×2+98×4+100)=97(分),
×[(94﹣97)2+(95﹣97)2×2+(97﹣97)2×2+(98﹣97)2×4+(100﹣97)
∴这组数据的方差为
2
]=3(分2),
故选:B.
【点评】本题主要考查中位数和方差,解题的关键是掌握中位数和方差的定义. 8.(3分)如图,已知∠AOB.按照以下步骤作图:
①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.
②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE. ③连接OE交CD于点M.
2
下列结论中错误的是( )
A.∠CEO=∠DEO B.CM=MD
C.∠OCD=∠ECD D.S四边形OCED=CD?OE
【分析】利用基本作图得出角平分线的作图,进而解答即可. 【解答】解:由作图步骤可得:OE是∠AOB的角平分线, ∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD?OE, 但不能得出∠OCD=∠ECD, 故选:C.
【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B. C. D.
.由此即可判断.
【分析】由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+【解答】解:由题意当0≤x≤3时,y=3, 当3<x<5时,y=×3×(5﹣x)=﹣x+故选:D.
.
【点评】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题,属于中考常考题型.
10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为( ) A.m=﹣2
B.m=3
C.m=3或m=﹣2 D.m=﹣3或m=2
【分析】设x1,x2是x2+2mx+m2+m=0的两个实数根,由根与系数的关系得x1+x2=﹣2m,x1?x2=m2+m,再由x12+x22=(x1+x2)2﹣2x1?x2代入即可;
【解答】解:设x1,x2是x2+2mx+m2+m=0的两个实数根, ∴△=﹣4m≥0,
3
∴m≤0,
∴x1+x2=﹣2m,x1?x2=m2+m,
∴x12+x22=(x1+x2)2﹣2x1?x2=4m2﹣2m2﹣2m=2m2﹣2m=12, ∴m=3或m=﹣2; ∴m=﹣2; 故选:A.
【点评】本题考查一元二次方程根与系数的关系;牢记韦达定理,灵活运用完全平方公式是解题的关键. 11.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为( )
A.8
B.10
C.12
D.16
【分析】连接BD,如图,先利用圆周角定理证明∠ADE=∠DAC得到FD=FA=5,再根据正弦的定义计算出EF=3,则AE=4,DE=8,接着证明△ADE∽△DBE,利用相似比得到BE=16,所以AB=20,然后在Rt△ABC中利用正弦定义计算出BC的长. 【解答】解:连接BD,如图, ∵AB为直径,
∴∠ADB=∠ACB=90°, ∵∠AD=CD, ∴∠DAC=∠DCA, 而∠DCA=∠ABD, ∴∠DAC=∠ABD, ∵DE⊥AB,
∴∠ABD+∠BDE=90°, 而∠ADE+∠BDE=90°, ∴∠ABD=∠ADE, ∴∠ADE=∠DAC, ∴FD=FA=5,
在Rt△AEF中,∵sin∠CAB=∴EF=3, ∴AE=
=4,DE=5+3=8,
=,
∵∠ADE=∠DBE,∠AED=∠BED, ∴△ADE∽△DBE,
∴DE:BE=AE:DE,即8:BE=4:8, ∴BE=16, ∴AB=4+16=20,
4
在Rt△ABC中,∵sin∠CAB=∴BC=20×=12. 故选:C.
=,
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
12.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是( ) A.2≤t<11
B.t≥2
C.6<t<11
D.2≤t<6
【分析】根据给出的对称轴求出函数解析式为y=x2﹣2x+3,将一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,再由﹣1<x<4的范围确定y的取值范围即可求解; 【解答】解:∵y=x2+bx+3的对称轴为直线x=1, ∴b=﹣2, ∴y=x2﹣2x+3,
∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点, ∵方程在﹣1<x<4的范围内有实数根, 当x=﹣1时,y=6; 当x=4时,y=11;
函数y=x2﹣2x+3在x=1时有最小值2; ∴2≤t<6; 故选:D.
二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。) 13.(3分)若2x=3,2y=5,则2x+y= 15 .
【分析】由2x=3,2y=5,根据同底数幂的乘法可得2x+y=2x?2y,继而可求得答案. 【解答】解:∵2x=3,2y=5, ∴2x+y=2x?2y=3×5=15. 故答案为:15.
14.(3分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是 1<k<3 . 【分析】根据一次函数y=kx+b,k<0,b<0时图象经过第二、三、四象限,可得2﹣2k<0,k﹣3<0,即可求解;
【解答】解:y=(2﹣2k)x+k﹣3经过第二、三、四象限, ∴2﹣2k<0,k﹣3<0, ∴k>1,k<3, ∴1<k<3; 故答案为1<k<3;
5
2019年潍坊市中考数学试卷(解析版)



