一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,
(1)写出数轴上点B表示的数________;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:
①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.
(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4. 【答案】 (1)﹣12 (2)6或10;0 (3)1.2或2 (4)3.2或1.6
【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;
(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;
②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;
(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.
【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。
(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。 (4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。
2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由; (3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由. 【答案】 (1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB, ∵∠AOC=30°, ∴∠BOC=2∠COM=150°, ∴∠COM=75°, ∴∠CON=15°,
∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°, 解得:t=15°÷3°=5秒; ②是,理由如下: ∵∠CON=15°,∠AON=15°, ∴ON平分∠AOC
(2)解:15秒时OC平分∠MON,理由如下: ∵∠AON+∠BOM=90°,∠CON=∠COM, ∵∠MON=90°, ∴∠CON=∠COM=45°,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON为3t,∠AOC为30°+6t, ∵∠AOC﹣∠AON=45°, 可得:6t﹣3t=15°, 解得:t=5秒
(3)解:OC平分∠MOB
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON为3t,∠AOC为30°+6t, ∴∠COM为 (90°﹣3t), ∵∠BOM+∠AON=90°,
可得:180°﹣(30°+6t)= (90°﹣3t), 解得:t=23.3秒; 如图:
【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150° ,故∠COM=75° ,根据角的和差得出∠CON=15°从而得到AON=∠AOC﹣∠CON=30°﹣15°=15° ,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;
(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值 ;
( 3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为 (90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值 。
3.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上, O为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.
(1)数轴上点A表示的数为________. (2)将长方形EFGH沿数轴所在直线水平移动.
①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.
②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为
何值时,D、E两点在数轴上表示的数时互为相反数? 【答案】 (1)6 (2)①3或9 ②如图所示:
据题意得出D所表示的数为
,点E表示数为:
,
当D、E两点在数轴上表示的数时互为相反数时: 则 解得:
,
当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.
【解析】【解答】解:(1)根据题意可得: A表示数为 的长, 故答案为:6.
( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形 积为长方形
面积的一半,此时为3;
面
积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面故答案为:3或9.
【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为 示数为:
,则
,当D、E两点在数轴上表示的数时互为相反数时点E表
,解出答案即可.
4.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.
(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式; (2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?
【答案】 (1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得 49+3x=100.
解得,x=17. 64+2y=100. 解得,y=18. 因为y>x,
所以,进入该公园次数较多的是B类年票. 答:进入该公园次数较多的是B类年票
(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得 49+3z=64+2z. 解得z=15.
答:进入该公园15次,购买A类、B类年票花钱一样多
【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.
5.寒假将至,某班家委会组织学生到北京旅游,现联系了一家旅行社,这家旅行社报价为4000元/人,但根据具体报名情况推出了优惠举措: 人数 10人及以下(含10人) 超过10人不超过20人的部分 超过20人的部分 3500元/人 3000元/人 收费标准 原价(不优惠) (1)如果一开始参加旅游的人数为13人,则预计总费用为________元; (2)在(1)问前提下,后来又有部分同学要求参加,设这部分同学加入后总共参与旅游的人数为 人,若总人数 还是不超过20人,则总费用为________元;若总人数 超过了20人,则总费用为________元;(结果均用含 的代数式表示)
(3)若最后家委会支付给旅行社人均费用为原价的九折,问共有多少人参加了本次旅游? 【答案】 (1)50500 (2)(3)解: ①若
,则
(不合题意,舍去) ②若
,则
;
;
,显然
. ;
答:共有25人参加了本次旅游
【解析】【解答】解:(1)根据题意得,4000×10+3500×(13-10)=50500(元),故答案为:50500;(2) 根据题意得,
①若总人数x还是不超过20人,则总费用为: 4000×10+3500(x-10)=3500x+5000(元); ②若总人数x超过了20人,则总费用为:
一元一次方程单元测试卷(含答案解析)



