好文档 - 专业文书写作范文服务资料分享网站

虚设零点法 培优练习(含解析)

天下 分享 时间: 加入收藏 我要投稿 点赞

ex1e2因为单调递增,对任意??(,],存在唯一的x0?(0,2],a?f(x0)?[0,1),

x?2241e2使得h(a)??,所以h(a)的值域是(,],

241e2综上,当a?[0,1)时,g(x)有h(a),h(a)的值域是(,].

247、已知函数f(x)?ax?ax?xlnx,且f(x)?0. (1)求a;

(2)证明:f(x)存在唯一的极大值点x0,且e?22?f(x0)?2?2.

6

(2)由(1)知 f?x??x?x?xlnx,f'(x)?2x?2?lnx.

21. x11当x?(0,) 时,h'(x)?0 ;当x?(,??) 时,h'(x)?0,

2211所以h?x?在(0,)上单调递减,在(,??)上单调递增.

22111又h?e?2??0,h()?0,h?1??0,所以h?x?在(0,)有唯一零点x0,在[,??)有唯一零点1,

222设h?x??2x?2?lnx,则h'(x)?2?且当x??0,x0?时,h?x??0;当x??x0,1?时,h?x??0,当x??1,???时,h?x??0. 因为f'(x)?h?x?,所以x?x0是f?x?的唯一极大值点. 由f'(x0)?0得lnx0?2?x0?1?,故f?x0??x0?1?x0?. 由x0??0,1?得f?x0??1. 4因为x?x0是f?x?在(0,1)的最大值点,

?1?1?2由e??0,1?,f'(e)?0得f(x0)?f(e)?e.

?1所以e?2?f?x0??2?2.

ax2?x?18、已知函数f?x??.

ex⑴求由线y?f?x?在点?0,?1?处的切线方程; ⑵证明:当a≥1时,f?x??e≥0.

(2ax?1)e?(ax?x?1)e?ax?2ax?x?2ax2?x?1?f(x)??解答:(1)由题意:f?x??得,

ex(ex)2ex∴f?(0)?x2x22?2,即曲线y?f?x?在点?0,?1?处的切线斜率为2,∴y?(?1)?2(x?0),即12x?y?1?0;

7

(2)证明:由题意:原不等式等价于:ex?1?ax2?x?1?0恒成立;令g(x)?ex?1?ax2?x?1,

x0?1x?1?2ax0?1?0,即e0??2ax0?1,

∴g?(x)?ex?1?2ax?1,g??(x)?ex?1?2a,∵a?1,∴g??(x)?0恒成立,∴g?(x)在(??,??)上单调递增,∴g?(x)在(??,??)上存在唯一x0使g?(x0)?0,∴ex0?1且g(x)在(??,x0)上单调递减,在(x0,??)上单调递增,∴g(x)?g(x0).

又g(x0)?e?ax02?x0?1?ax02?(1?2a)x0?2?(ax0?1)(x0?2),

111?1?11ag?(?)?e?1,∵a?1,∴0?ea?1?e?1,∴x0??,∴g(x0)?0,得证.

aa综上所述:当a?1时,f?x??e?0.

9、已知函数f(x)?(x?1)lnx?x?1.证明: (1)f(x)存在唯一的极值点;

(2)f(x)?0有且仅有两个实根,且两个实根互为倒数.

1111(x?0),设g(x)?lnx?,g?(x)??2?0 xxxx11则g(x)在(0,??)上递增,g(1)??1?0,g(2)?ln2??lne??0,

22所以存在唯一x0?(1,2),使得f?(x0)?g(x0)?0,

解答:(1)f?(x)?lnx?当0?x?x0时,g(x)?g(x0)?0,当x?x0时,g(x)?g(x0)?0, 所以f(x)在(0,x0)上递减,在(x0,??)上递增,所以f(x)存在唯一的极值点. (2)由(1)知存在唯一x0?(1,2),使得f?(x0)?0,即lnx0?1, x0f(x0)?(x0?1)lnx0?x0?1?(x0?1)11?x0?1??(x0?)?0, x0x011132222f(e)?2(e?1)?e?1?e?3?0, )?(?1)(?2)??1?1??0,2222eeee所以函数f(x)在(0,x0)上,(x0,??)上分别有一个零点. f(设f(x1)?f(x2)?0,f(1)??2?0,则x1?1?x0?x2, 有(x1?1)lnx1?x1?1?0?lnx1?x1?1, x1?1x2?1, x2?1(x2?1)lnx2?x2?1?0?lnx2?设h(x)?lnx?x?11,当0?x,x?1时,恒有h(x)?h()?0, x?1x则h(x1)?h(x2)?0时,有x1x2?1.

10、已知函数f?x??mx??x?1?e?1?m?R?.

2x(1)讨论函数f(x)的单调性;

8

23(2)证明:当x??,1?时,f?x??mx?x xx【详解】(1)f??x??2mx?xe?xe?2m.

?1??3???①当m?0时,令f??x??0,得x?0;令f??x??0,得x?0, 故f?x?在???,0?上单调递减,在?0,???上单调递增. ②当m?0时,令f??x??0,得x?0或x?ln??2m?. 当m??当?1x时,f??x??x?e?1??0,故f?x?在R上单调递增. 21?m?0时,令f??x??0,得x?0或x?ln??2m?;令f??x??0,得ln??2m??x?0, 2即f?x?在ln??2m?,0上单调递减,在??,ln??2m?,?0,???上单调递增. 当m??????1时,令f??x??0,得x?0或x?ln??2m?;令f??x??0,得0?x?ln??2m?, 2即f?x?在0,ln??2m?上单调递减,在???,0?,ln??2m?,??上单调递增. (2)设F?x??f?x??mx?x??x?1?e?x?1,

23x3????则F??x??e??x?1?e?3x?xe?3x,

xx2x??设??x??e?3x,则???x??e?3,

xx?1??1??x?,1?x?x?e?3?0∵,∴??在?,1?上单调递减, ??,∴???3??3?又?????1??3?3e?1?0,??1??e?3?0,

∴??x?在?,1?内存在唯一的零点,设为x0. 则当

?1??3?1?x?x0时.??x??0,F??x??0,F?x?单调递增; 313当x0?x?1时,??x??0,F??x??0,F?x?单调递减, 又F?1??26?2e?26?18e?0,F?1??0,

??13?3?27327∴F?x??0在x??,1?上成立,

?1??3??1?23x?∴当?,1?时,f?x??mx?x.

?3?

9

虚设零点法 培优练习(含解析)

ex1e2因为单调递增,对任意??(,],存在唯一的x0?(0,2],a?f(x0)?[0,1),x?2241e2使得h(a)??,所以h(a)的值域是(,],241e2综上,当a?[0,1)时,g(x)有h(a),h(a)的值域是(,].247、已知函数f(x)?ax?ax?xlnx,且f(x)?0.(1)求a;<
推荐度:
点击下载文档文档为doc格式
1tnre7cq3n1ujtp7zqyg25ui718xn3018yd
领取福利

微信扫码领取福利

微信扫码分享