好文档 - 专业文书写作范文服务资料分享网站

高中数学第四章数系的扩充与复数的引入4.2复数的四则运算复数问题的六种简求策略素材北师大版选修(1)

天下 分享 时间: 加入收藏 我要投稿 点赞

复数问题的六种简求策略

复数是初等数学与高等数学的一个重要衔接点,它涉及到高中数学的很多分支,是每年高考中必考的内容,为帮助同学们掌握这部分内容,本文介绍几种简求复数题的常用方法,供参考。 一、特殊值法

对于含有参数范围的题目,可选定参数范围内一特值代入,进行估算,可排除干扰支,确定应选支。

例1.当

2<m<1时,复数z=(3m-2)+(m-1)i在复平面上对应的点位于( ) 3B.第二象限 C.第三象限 D.第四象限

A.第一象限 分析:由于

2311

<m<1,取m=,则z=?i,对应的点在第四象限,故选D。 3444

二、运用特殊等式

记牢一些常用的特殊等式,如(1±i)=±2i,(?2

13±i)3=1等,有助于复数运22算题的快速解决。

例2.计算(1-i)·(?6

13?i)97 22解:原式=·(?3

1313?i)96·(??i) 2222=(-2i)·(-

3

1313?i)3×32·(??i) 2222=8i·(?13?i)=-43-4i 22三、运用共轭复数的性质

共轭复数的性质很多,如z为实数?z=z,z为纯复数?z=-z,z·z=|z|等,若

2

能灵活运用,可简化解题。

例3.设复数z满足|z|=2,求|z-z+4|的最大值和最小值。

解析:由|z|=2,得|z|=z·z=4,则|z-z+4|=|z-z+z·z|=|z(z-1+z)|=2|(z -1+z|,

2

2

2

2

若设z=a+bi(-2≤a≤2,-2≤b≤2),则|z-z+4|=2|a+bi-1+a-bi|=2|2a-1|。

1

2

∴当a=

122

时,|z-z+4|min=0,当a=-2时,|z-z+4|max=10 2四、两边同取模

如果一个复数等式中,一边能够表示成实部和虚部,采用两边取模后,可将虚数问题转化为实数问题。

例4.设复数z满足关系式z+|z|=2+ i,那么z等于( ) A.?3+i 4B.

3-i 4

C.?3?i 4 D.

3?i 4分析:原关系式可化为z=2-|z|+i,又|z|=|z|且为实数,两边取模得

2|z|=(2?|z|)?1,解得|z|=

553,则z=2-+i=+ i,故应选D。 444五、运用整体思想

有些复数问题,若从整体上去观察、分析题设的结构特征,充分利用复数的有关概念和性质,对问题进行整体处理,可得妙解。

例5.求同时满足下列条件的所有复数z①z +与虚部均为整数。

解析:观察给出式,可设μ=z+

1010是实数,且1<z+≤6,②z的实部zz102

,则μ∈R,且1<μ≤6,整理得z- μz+10=0,z40??2?则△=μ-40<0,由求根公式得z=±i由条件②知是整数,则μ=2,或4

2222

?或6,当μ=2时,z=1±3i,当μ=4时,z=2±6i(不合题意,舍去),当μ=6时,z=3±i故满足条件的复数z=1±3i,或z=3±i。 六、活用复数的几何意义

在深刻理解复数几何意义的基础上,将复数问题转化为几何问题,借助几何图形的直观化可快速解题。

例6.已知z1、z2∈C,且|z1|=1,若z1+z2=2i,则|z1-z2|的最大值是( ) A.6

B.5

C.4

D.3

分析:由|z1|=1,且z1=2i-z2知|z2-2i|=1,根据模的几何意义知z1、z2分别在单位圆及以2i为圆心的圆上,则z1、z2对应的两点间距离|z1-z2|的最大值为两圆的连心线长加上两圆的半径长即|z1-z2| max =2+2=4,故选C。

2

高中数学第四章数系的扩充与复数的引入4.2复数的四则运算复数问题的六种简求策略素材北师大版选修(1)

复数问题的六种简求策略复数是初等数学与高等数学的一个重要衔接点,它涉及到高中数学的很多分支,是每年高考中必考的内容,为帮助同学们掌握这部分内容,本文介绍几种简求复数题的常用方法,供参考。一、特殊值法对于含有参数范围的题目,可选定参数范围内一特值代入,进行估算,可排除干扰支,确定应选支。例1.当2<m<1时,复数z=(3m-2)+
推荐度:
点击下载文档文档为doc格式
13jtz368kn62h6002tw881m9s40m5v00juf
领取福利

微信扫码领取福利

微信扫码分享