北京第一零五中学数学轴对称填空选择检测题(Word版 含答案)
一、八年级数学全等三角形填空题(难)
1.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN分别交AB、AC于点E、F.则下列四个结论:
①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=是_____(填序号).
12
BC.其中正确结论4
【答案】①② 【解析】
分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④. 详解:∵∠B=45°,AB=AC ∴点D为BC的中点, ∴AD=CD=BD 故①正确;
由AD⊥BC,∠BAD=45° 可得∠EAD=∠C ∵∠MDN是直角
∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90° ∴∠ADE=∠CDF ∴△ADE≌△CDF(ASA) 故②正确; ∴DE=DF,AE=CF, ∴AF=BE ∴BE+AE=AF+AE ∴AE+AF>EF 故③不正确;
由△ADE≌△CDF可得S△ADF=S△BDE
∴S四边形AEDF=S△ACD=故④不正确. 故答案为①②.
11111×AD×CD=×BC×BC=BC2, 22228点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.
2.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=_____.
【答案】7 【解析】
由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7. 故答案为:7.
点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.
3.如图,已知△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,若BE交AD于点F,则∠AFE的大小为_____(度).
【答案】60 【解析】 【分析】
根据△ABC为等边三角形得到AB=BC,∠ABD=∠BCE=60°,再利用BD=CE证得△ABD≌△BCE,得到∠BAD=∠CBE,再利用内角和外角的关系即可得到∠AFE=60°. 【详解】
∵△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE, ∴AB=BC,∠ABD=∠BCE=60°, 在△ABD和△BCE中,
?AB?BC???ABD=?BCE, ?BD?CE?∴△ABD≌△BCE(SAS), ∴∠BAD=∠CBE,
∵∠ABF+∠CBE=∠ABC=60°, ∴∠ABF+∠BAD=60°, ∵∠AFE=∠ABF+∠BAD, ∴∠AFE=60°, 故答案为:60. 【点睛】
此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.
4.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)
【答案】①②③⑤ 【解析】 【分析】
①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE. ③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;
②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.
④没有条件证出BO=OE,得出④错误;
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论. 【详解】
解:∵△ABC和△CDE都是等边三角形, ∴AC=BC,CD=CE,∠ACB=∠DCE=60°, ∴∠ACB+∠BCD=∠DCE+∠BCD, ∴∠ACD=∠BCE,
?AC?BC?在△ACD和△BCE中,??ACD??BCE,
?CD?CE?
北京第一零五中学数学轴对称填空选择检测题(Word版 含答案)



