六年级数学奥数培训资料 姓名:__________________
第17讲 浓度问题
一、知识要点
在百分数应用题中有一类叫溶液配比问题,即浓度问题。我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,
浓度=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100% 解答浓度问题,首先要弄清什么是浓度。在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。要根据题目的条件和问题逐一分析,也可以分步解答。
二、精讲精练
【例题1】有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:600×(1-7%)=558(克) 现在糖水的质量 :558÷(1-10%)=620(克) 加入糖的质量 :620-600=20(克) 答:需要加入20克糖。 练习1:
1.现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?
2.有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克? 3.有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?
【例题2】一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克浓度为35%的农药加多少千克水,才能配成1.75%的农药800千克?
【思路导航】把浓度高的溶液经添加溶剂变为浓度低的溶液的过程称为稀释。在这种
- 46 -
六年级数学奥数培训资料
稀释过程中,溶质的质量是不变的。这是解这类问题的关键。
800千克1.75%的农药含纯农药的质量为800×1.75%=14(千克) 含14千克纯农药的35%的农药质量为14÷35%=40(千克)
由40千克农药稀释为800千克农药应加水的质量为800-40=760(千克) 答:用40千克的浓度为35%的农药中添加760千克水,才能配成浓度为1.75%的农药800千克。
练习2:
1.用含氨0.15%的氨水进行油菜追肥。现有含氨16%的氨水30千克,配置时需加水多少千克?
2.仓库运来含水量为90%的一种水果100千克。一星期后再测,发现含水量降低到80%。现在这批水果的质量是多少千克?
3.一容器内装有10升纯酒精,倒出2.5升后,用水加满;再倒出5升,再用水加满。这时容器内溶液的浓度是多少?
【例题3】现有浓度为10%的盐水20千克。再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?
【思路导航】这是一个溶液混合问题。混合前、后溶液的浓度改变了,但总体上溶质及溶液的总质量没有改变。所以,混合前两种溶液中溶质的和等于混合后溶液中的溶质的量。
20千克10%的盐水中含盐的质量20×10%=2(千克)
混合成22%时,20千克溶液中含盐的质量20×22%=404(千克) 需加30%盐水溶液的质量(4.4-2)÷(30%-22%)=30(千克) 答:需加入30千克浓度为30%的盐水,可以得到浓度为22%的盐水。 练习3:
1.在100千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液?
2.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得到的酒精溶液的浓度是多少?
3.在20%的盐水中加入10千克水,浓度为15%。再加入多少千克盐,浓度为25%? 【例题4】将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?
【思路导航】根据题意,将20%的盐水与5%的盐水混合配成15%的盐水,说明混合前两种盐水中盐的质量和与混合后盐水中盐的质量是相等的。可根据这一数量间的相等关系列方程解答。
解:设20%的盐水需x克,则5%的盐水为600-x克,那么
- 47 -
六年级数学奥数培训资料 姓名:__________________
20%x+(600-x)×5%=600×15% X =400
600-400=200(克)
答:需要20%的盐水400克,5%的盐水200克。 练习4:
1.两种钢分别含镍5%和40%,要得到140吨含镍30%的钢,需要含镍5%的钢和含镍40%的钢各多少吨?
2.甲、乙两种酒各含酒精75%和55%,要配制含酒精65%的酒3000克,应当从这两种酒中各取多少克?
3.甲、乙两只装糖水的桶,甲桶有糖水60千克,含糖率为40%;乙桶有糖水40千克,含糖率为20%。要使两桶糖水的含糖率相等,需把两桶的糖水相互交换多少千克?
【例题5】甲、乙、丙3个试管中各盛有10克、20克、30克水。把某种质量分数的盐水10克倒入甲管中,混合后取10克倒入乙管中,再混合后从乙管中取出10克倒入丙管中。现在丙管中的盐水的质量分数为0.5%。最早倒入甲管中的盐水质量分数是多少?
【思路导航】混合后甲、乙、丙3个试管中应有的盐水分别是20克、30克、40克。根据题意,可求出现在丙管中盐的质量。又因为丙管中原来只有30克的水,它的盐是从10克盐水中的乙管里取出的。由此可求出乙管里30克盐水中盐的质量。而乙管里的盐又是从10克盐水中的甲管里取出的,由此可求出甲管里20克盐水中盐的质量。而甲管里的盐是某种浓度的盐水中的盐,这样就可得到最初倒入甲管中盐水的质量分数。
丙管中盐的质量:(30+10)×0.5%=02(克)
倒入乙管后,乙管中盐的质量:0.2×【(20+10)÷10】=0.6(克) 倒入甲管,甲管中盐的质量:0.6×【(10+10)÷10】=1.2(克) 1.2÷10=12%
答:最早倒入甲管中的盐水质量分数是12%。 练习5:
1.从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再用清水将杯加满。如此反复三次后,杯中盐水的浓度是多少?
2.甲容器中又8%的盐水300克,乙容器中有12.5%的盐水120克。往甲、乙两个容器分别倒入等量的水,使两个容器中盐水的浓度一样。每个容器应倒入多少克水?
3.甲种酒含纯酒精40%,乙种酒含纯酒精36%,丙种酒含纯酒精35%。将三种酒混在一起得到含酒精38.5%的酒11千克。已知乙种酒比丙种酒多3千克,那么甲种酒有多少千克?
- 48 -
六年级数学奥数培训资料
第18讲 面积计算(一)
一、知识要点
计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练
【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。又因为AE=ED,所以S△ABF=S△BDF=2S△DCF。
因此,S△ABC=5 S△DCF。由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:
1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。求阴影部分的面积。
2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。求阴影部分的面积。
- 49 -
六年级数学奥数培训资料 姓名:__________________
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?
【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。所以△AOD的面积为6÷2=3。
因为S△ABD与S△ACD等底等高 所以S△ABO=6
因为S△BOC是S△DOC的2倍 所以△ABO是△AOD的2倍 所以△AOD=6÷2=3。 答:△AOD的面积是3。 练习2:
1.两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?
2.已知AO=1/3OC,求梯形ABCD的面积(如图所示)。
3.已知三角形AOB的面积为15平方厘米,线段OB的长度为OD的3倍。求梯形ABCD的面积。(如图所示)。
- 50 -